License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX/RANDOM.2021.7
URN: urn:nbn:de:0030-drops-147002
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14700/
Go to the corresponding LIPIcs Volume Portal


Kim, Eun Jung ; Lee, Euiwoong ; Thilikos, Dimitrios M.

A Constant-Factor Approximation for Weighted Bond Cover

pdf-format:
LIPIcs-APPROX7.pdf (0.8 MB)


Abstract

The Weighted ℱ-Vertex Deletion for a class ℱ of graphs asks, weighted graph G, for a minimum weight vertex set S such that G-S ∈ ℱ. The case when ℱ is minor-closed and excludes some graph as a minor has received particular attention but a constant-factor approximation remained elusive for Weighted ℱ-Vertex Deletion. Only three cases of minor-closed ℱ are known to admit constant-factor approximations, namely Vertex Cover, Feedback Vertex Set and Diamond Hitting Set. We study the problem for the class ℱ of θ_c-minor-free graphs, under the equivalent setting of the Weighted c-Bond Cover problem, and present a constant-factor approximation algorithm using the primal-dual method. For this, we leverage a structure theorem implicit in [Joret et al., SIDMA'14] which states the following: any graph G containing a θ_c-minor-model either contains a large two-terminal protrusion, or contains a constant-size θ_c-minor-model, or a collection of pairwise disjoint constant-sized connected sets that can be contracted simultaneously to yield a dense graph. In the first case, we tame the graph by replacing the protrusion with a special-purpose weighted gadget. For the second and third case, we provide a weighting scheme which guarantees a local approximation ratio. Besides making an important step in the quest of (dis)proving a constant-factor approximation for Weighted ℱ-Vertex Deletion, our result may be useful as a template for algorithms for other minor-closed families.

BibTeX - Entry

@InProceedings{kim_et_al:LIPIcs.APPROX/RANDOM.2021.7,
  author =	{Kim, Eun Jung and Lee, Euiwoong and Thilikos, Dimitrios M.},
  title =	{{A Constant-Factor Approximation for Weighted Bond Cover}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{7:1--7:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14700},
  URN =		{urn:nbn:de:0030-drops-147002},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.7},
  annote =	{Keywords: Constant-factor approximation algorithms, Primal-dual method, Bonds in graphs, Graph minors, Graph modification problems}
}

Keywords: Constant-factor approximation algorithms, Primal-dual method, Bonds in graphs, Graph minors, Graph modification problems
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)
Issue Date: 2021
Date of publication: 15.09.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI