License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX/RANDOM.2021.35
URN: urn:nbn:de:0030-drops-147281
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14728/
Go to the corresponding LIPIcs Volume Portal


Li, Yi ; Woodruff, David P.

The Product of Gaussian Matrices Is Close to Gaussian

pdf-format:
LIPIcs-APPROX35.pdf (0.7 MB)


Abstract

We study the distribution of the matrix product G₁ G₂ ⋯ G_r of r independent Gaussian matrices of various sizes, where G_i is d_{i-1} × d_i, and we denote p = d₀, q = d_r, and require d₁ = d_{r-1}. Here the entries in each G_i are standard normal random variables with mean 0 and variance 1. Such products arise in the study of wireless communication, dynamical systems, and quantum transport, among other places. We show that, provided each d_i, i = 1, …, r, satisfies d_i ≥ C p ⋅ q, where C ≥ C₀ for a constant C₀ > 0 depending on r, then the matrix product G₁ G₂ ⋯ G_r has variation distance at most δ to a p × q matrix G of i.i.d. standard normal random variables with mean 0 and variance ∏_{i = 1}^{r-1} d_i. Here δ → 0 as C → ∞. Moreover, we show a converse for constant r that if d_i < C' max{p,q}^{1/2}min{p,q}^{3/2} for some i, then this total variation distance is at least δ', for an absolute constant δ' > 0 depending on C' and r. This converse is best possible when p = Θ(q).

BibTeX - Entry

@InProceedings{li_et_al:LIPIcs.APPROX/RANDOM.2021.35,
  author =	{Li, Yi and Woodruff, David P.},
  title =	{{The Product of Gaussian Matrices Is Close to Gaussian}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{35:1--35:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14728},
  URN =		{urn:nbn:de:0030-drops-147281},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.35},
  annote =	{Keywords: random matrix theory, total variation distance, matrix product}
}

Keywords: random matrix theory, total variation distance, matrix product
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)
Issue Date: 2021
Date of publication: 15.09.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI