License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX/RANDOM.2021.48
URN: urn:nbn:de:0030-drops-147411
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14741/
Go to the corresponding LIPIcs Volume Portal


Assadi, Sepehr ; Behnezhad, Soheil

On the Robust Communication Complexity of Bipartite Matching

pdf-format:
LIPIcs-APPROX48.pdf (0.7 MB)


Abstract

We study the robust - à la Chakrabarti, Cormode, and McGregor [STOC'08] - communication complexity of the maximum bipartite matching problem. The edges of an adversarially chosen n-vertex bipartite graph G are partitioned randomly between Alice and Bob. Alice has to send a single message to Bob, using which Bob has to output an approximate maximum matching of G. We are particularly interested in understanding the best approximation ratio possible by protocols that use a near-optimal message size of n ⋅ polylog(n).
The communication complexity of bipartite matching in this setting under an adversarial partitioning is well-understood. In their beautiful paper, Goel, Kapralov, and Khanna [SODA'12] gave a rac{2} {3}-approximate protocol with O(n) communication and showed that this approximation is tight unless we allow more than a near-linear communication. The complexity of the robust version, i.e., with a random partitioning of the edges, however remains wide open. The best known protocol, implied by a very recent random-order streaming algorithm of the authors [ICALP'21], uses O(n log n) communication to obtain a (rac{2} {3} + ε₀)-approximation for a constant ε₀ ∼ 10^{-14}. The best known lower bound, on the other hand, leaves open the possibility of all the way up to even a (1-ε)-approximation using near-linear communication for constant ε > 0.
In this work, we give a new protocol with a significantly better approximation. Particularly, our protocol achieves a 0.716 expected approximation using O(n) communication. This protocol is based on a new notion of distribution-dependent sparsifiers which give a natural way of sparsifying graphs sampled from a known distribution. We then show how to lift the assumption on knowing the graph’s distribution via minimax theorems. We believe this is a particularly powerful method of designing communication protocols and might find further applications.

BibTeX - Entry

@InProceedings{assadi_et_al:LIPIcs.APPROX/RANDOM.2021.48,
  author =	{Assadi, Sepehr and Behnezhad, Soheil},
  title =	{{On the Robust Communication Complexity of Bipartite Matching}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{48:1--48:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14741},
  URN =		{urn:nbn:de:0030-drops-147411},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.48},
  annote =	{Keywords: Maximum Matching, Communication Complexity, Random-Order Streaming}
}

Keywords: Maximum Matching, Communication Complexity, Random-Order Streaming
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)
Issue Date: 2021
Date of publication: 15.09.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI