License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.DISC.2021.40
URN: urn:nbn:de:0030-drops-148427
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14842/
Go to the corresponding LIPIcs Volume Portal


Sudo, Yuichi ; Eguchi, Ryota ; Izumi, Taisuke ; Masuzawa, Toshimitsu

Time-Optimal Loosely-Stabilizing Leader Election in Population Protocols

pdf-format:
LIPIcs-DISC-2021-40.pdf (0.9 MB)


Abstract

We consider the leader election problem in the population protocol model. In pragmatic settings of population protocols, self-stabilization is a highly desired feature owing to its fault resilience and the benefit of initialization freedom. However, the design of self-stabilizing leader election is possible only under a strong assumption (i.e., the knowledge of the exact size of a network) and rich computational resource (i.e., the number of states). Loose-stabilization is a promising relaxed concept of self-stabilization to address the aforementioned issue. Loose-stabilization guarantees that starting from any configuration, the network will reach a safe configuration where a single leader exists within a short time, and thereafter it will maintain the single leader for a long time, but not necessarily forever. The main contribution of this paper is giving a time-optimal loosely-stabilizing leader election protocol. The proposed protocol with design parameter τ ≥ 1 attains O(τ log n) parallel convergence time and Ω(n^τ) parallel holding time (i.e., the length of the period keeping the unique leader), both in expectation. This protocol is time-optimal in the sense of both the convergence and holding times in expectation because any loosely-stabilizing leader election protocol with the same length of the holding time is known to require Ω(τ log n) parallel time.

BibTeX - Entry

@InProceedings{sudo_et_al:LIPIcs.DISC.2021.40,
  author =	{Sudo, Yuichi and Eguchi, Ryota and Izumi, Taisuke and Masuzawa, Toshimitsu},
  title =	{{Time-Optimal Loosely-Stabilizing Leader Election in Population Protocols}},
  booktitle =	{35th International Symposium on Distributed Computing (DISC 2021)},
  pages =	{40:1--40:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-210-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{209},
  editor =	{Gilbert, Seth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14842},
  URN =		{urn:nbn:de:0030-drops-148427},
  doi =		{10.4230/LIPIcs.DISC.2021.40},
  annote =	{Keywords: population protocols, leader election, loose-stabilization, self-stabilization}
}

Keywords: population protocols, leader election, loose-stabilization, self-stabilization
Collection: 35th International Symposium on Distributed Computing (DISC 2021)
Issue Date: 2021
Date of publication: 04.10.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI