License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.DISC.2021.50
URN: urn:nbn:de:0030-drops-148521
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14852/
Brandt, Sebastian ;
Latypov, Rustam ;
Uitto, Jara
Brief Announcement: Memory Efficient Massively Parallel Algorithms for LCL Problems on Trees
Abstract
We establish scalable Massively Parallel Computation (MPC) algorithms for a family of fundamental graph problems on trees. We give a general method that, for a wide range of LCL problems, turns their message passing counterparts into exponentially faster algorithms in the sublinear MPC model. In particular, we show that any LCL on trees that has a deterministic complexity of O(n) in the LOCAL model can be sped up to O(log n) (high-complexity regime) in the sublinear MPC model and similarly n^{o(1)} to O(log log n) (intermediate-complexity regime). We emphasize, that we work on bounded degree trees and all of our algorithms work in the sublinear MPC model, where local memory is O(n^δ) for δ < 1 and global memory is O(m).
For the high-complexity regime, one key ingredient is a novel pointer-chain technique and analysis that allows us to solve any solvable LCL on trees with a sublinear MPC algorithm with complexity O(log n). For the intermediate-complexity regime, we adapt the approach by Chang and Pettie [FOCS'17], who gave a canonical algorithm for solving LCL problems on trees in the LOCAL model. For the special case of 3-coloring trees, which is a natural LCL problem, we provide a conditional Ω(log log n) lower bound, implying that solving LCL problems on trees with deterministic LOCAL complexity n^{o(1)} requires Θ(log log n) deterministic time in the sublinear MPC model when using a natural family of component-stable algorithms.
BibTeX - Entry
@InProceedings{brandt_et_al:LIPIcs.DISC.2021.50,
author = {Brandt, Sebastian and Latypov, Rustam and Uitto, Jara},
title = {{Brief Announcement: Memory Efficient Massively Parallel Algorithms for LCL Problems on Trees}},
booktitle = {35th International Symposium on Distributed Computing (DISC 2021)},
pages = {50:1--50:4},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-210-5},
ISSN = {1868-8969},
year = {2021},
volume = {209},
editor = {Gilbert, Seth},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2021/14852},
URN = {urn:nbn:de:0030-drops-148521},
doi = {10.4230/LIPIcs.DISC.2021.50},
annote = {Keywords: Distributed computing, Locally checkable labeling problems, Trees, Massively Parallel Computation, Sublinear memory, 3-coloring}
}
Keywords: |
|
Distributed computing, Locally checkable labeling problems, Trees, Massively Parallel Computation, Sublinear memory, 3-coloring |
Collection: |
|
35th International Symposium on Distributed Computing (DISC 2021) |
Issue Date: |
|
2021 |
Date of publication: |
|
04.10.2021 |