License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.DISC.2021.50
URN: urn:nbn:de:0030-drops-148521
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14852/
Go to the corresponding LIPIcs Volume Portal


Brandt, Sebastian ; Latypov, Rustam ; Uitto, Jara

Brief Announcement: Memory Efficient Massively Parallel Algorithms for LCL Problems on Trees

pdf-format:
LIPIcs-DISC-2021-50.pdf (0.6 MB)


Abstract

We establish scalable Massively Parallel Computation (MPC) algorithms for a family of fundamental graph problems on trees. We give a general method that, for a wide range of LCL problems, turns their message passing counterparts into exponentially faster algorithms in the sublinear MPC model. In particular, we show that any LCL on trees that has a deterministic complexity of O(n) in the LOCAL model can be sped up to O(log n) (high-complexity regime) in the sublinear MPC model and similarly n^{o(1)} to O(log log n) (intermediate-complexity regime). We emphasize, that we work on bounded degree trees and all of our algorithms work in the sublinear MPC model, where local memory is O(n^δ) for δ < 1 and global memory is O(m).
For the high-complexity regime, one key ingredient is a novel pointer-chain technique and analysis that allows us to solve any solvable LCL on trees with a sublinear MPC algorithm with complexity O(log n). For the intermediate-complexity regime, we adapt the approach by Chang and Pettie [FOCS'17], who gave a canonical algorithm for solving LCL problems on trees in the LOCAL model. For the special case of 3-coloring trees, which is a natural LCL problem, we provide a conditional Ω(log log n) lower bound, implying that solving LCL problems on trees with deterministic LOCAL complexity n^{o(1)} requires Θ(log log n) deterministic time in the sublinear MPC model when using a natural family of component-stable algorithms.

BibTeX - Entry

@InProceedings{brandt_et_al:LIPIcs.DISC.2021.50,
  author =	{Brandt, Sebastian and Latypov, Rustam and Uitto, Jara},
  title =	{{Brief Announcement: Memory Efficient Massively Parallel Algorithms for LCL Problems on Trees}},
  booktitle =	{35th International Symposium on Distributed Computing (DISC 2021)},
  pages =	{50:1--50:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-210-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{209},
  editor =	{Gilbert, Seth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14852},
  URN =		{urn:nbn:de:0030-drops-148521},
  doi =		{10.4230/LIPIcs.DISC.2021.50},
  annote =	{Keywords: Distributed computing, Locally checkable labeling problems, Trees, Massively Parallel Computation, Sublinear memory, 3-coloring}
}

Keywords: Distributed computing, Locally checkable labeling problems, Trees, Massively Parallel Computation, Sublinear memory, 3-coloring
Collection: 35th International Symposium on Distributed Computing (DISC 2021)
Issue Date: 2021
Date of publication: 04.10.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI