License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.IPEC.2021.18
URN: urn:nbn:de:0030-drops-154010
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/15401/
Go to the corresponding LIPIcs Volume Portal


Feldmann, Andreas Emil ; Rai, Ashutosh

On Extended Formulations For Parameterized Steiner Trees

pdf-format:
LIPIcs-IPEC-2021-18.pdf (0.8 MB)


Abstract

We present a novel linear program (LP) for the Steiner Tree problem, where a set of terminal vertices needs to be connected by a minimum weight tree in a graph G = (V,E) with non-negative edge weights. This well-studied problem is NP-hard and therefore does not have a compact extended formulation (describing the convex hull of all Steiner trees) of polynomial size, unless P=NP. On the other hand, Steiner Tree is fixed-parameter tractable (FPT) when parameterized by the number k of terminals, and can be solved in O(3^k|V|+2^k|V|²) time via the Dreyfus-Wagner algorithm. A natural question thus is whether the Steiner Tree problem admits an extended formulation of comparable size. We first answer this in the negative by proving a lower bound on the extension complexity of the Steiner Tree polytope, which, for some constant c > 0, implies that no extended formulation of size f(k)2^{cn} exists for any function f. However, we are able to circumvent this lower bound due to the fact that the edge weights are non-negative: we prove that Steiner Tree admits an integral LP with O(3^k|E|) variables and constraints. The size of our LP matches the runtime of the Dreyfus-Wagner algorithm, and our poof gives a polyhedral perspective on this classic algorithm. Our proof is simple, and additionally improves on a previous result by Siebert et al. [2018], who gave an integral LP of size O((2k/e)^k)|V|^{O(1)}.

BibTeX - Entry

@InProceedings{feldmann_et_al:LIPIcs.IPEC.2021.18,
  author =	{Feldmann, Andreas Emil and Rai, Ashutosh},
  title =	{{On Extended Formulations For Parameterized Steiner Trees}},
  booktitle =	{16th International Symposium on Parameterized and Exact Computation (IPEC 2021)},
  pages =	{18:1--18:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-216-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{214},
  editor =	{Golovach, Petr A. and Zehavi, Meirav},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/15401},
  URN =		{urn:nbn:de:0030-drops-154010},
  doi =		{10.4230/LIPIcs.IPEC.2021.18},
  annote =	{Keywords: Steiner trees, integral linear program, extension complexity, fixed-parameter tractability}
}

Keywords: Steiner trees, integral linear program, extension complexity, fixed-parameter tractability
Collection: 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)
Issue Date: 2021
Date of publication: 22.11.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI