License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ISAAC.2021.26
URN: urn:nbn:de:0030-drops-154596
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/15459/
Małafiejska, Anna ;
Małafiejski, Michał ;
Ocetkiewicz, Krzysztof M. ;
Pastuszak, Krzysztof
Interval Edge Coloring of Bipartite Graphs with Small Vertex Degrees
Abstract
An edge coloring of a graph G is called interval edge coloring if for each v ∈ V(G) the set of colors on edges incident to v forms an interval of integers. A graph G is interval colorable if there is an interval coloring of G. For an interval colorable graph G, by the interval chromatic index of G, denoted by χ'_i(G), we mean the smallest number k such that G is interval colorable with k colors. A bipartite graph G is called (α,β)-biregular if each vertex in one part has degree α and each vertex in the other part has degree β. A graph G is called (α*,β*)-bipartite if G is a subgraph of an (α,β)-biregular graph and the maximum degree in one part is α and the maximum degree in the other part is β.
In the paper we study the problem of interval edge colorings of (k*,2*)-bipartite graphs, for k ∈ {3,4,5}, and of (5*,3*)-bipartite graphs. We prove that every (5*,2*)-bipartite graph admits an interval edge coloring using at most 6 colors, which can be found in O(n^{3/2}) time, and we prove that an interval edge 5-coloring of a (5*,2*)-bipartite graph can be found in O(n^{3/2}) time, if it exists. We show that every (4^*,2^*)-bipartite graph admits an interval edge 4-coloring, which can be found in O(n) time. The two following problems of interval edge coloring are known to be NP-complete: 6-coloring of (6,3)-biregular graphs (Asratian and Casselgren (2006)) and 5-coloring of (5*,5*)-bipartite graphs (Giaro (1997)). In the paper we prove NP-completeness of 5-coloring of (5*,3*)-bipartite graphs.
BibTeX - Entry
@InProceedings{malafiejska_et_al:LIPIcs.ISAAC.2021.26,
author = {Ma{\l}afiejska, Anna and Ma{\l}afiejski, Micha{\l} and Ocetkiewicz, Krzysztof M. and Pastuszak, Krzysztof},
title = {{Interval Edge Coloring of Bipartite Graphs with Small Vertex Degrees}},
booktitle = {32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
pages = {26:1--26:12},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-214-3},
ISSN = {1868-8969},
year = {2021},
volume = {212},
editor = {Ahn, Hee-Kap and Sadakane, Kunihiko},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2021/15459},
URN = {urn:nbn:de:0030-drops-154596},
doi = {10.4230/LIPIcs.ISAAC.2021.26},
annote = {Keywords: interval edge coloring, biregular graphs, coloring algorithm}
}
Keywords: |
|
interval edge coloring, biregular graphs, coloring algorithm |
Collection: |
|
32nd International Symposium on Algorithms and Computation (ISAAC 2021) |
Issue Date: |
|
2021 |
Date of publication: |
|
30.11.2021 |