License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ISAAC.2021.54
URN: urn:nbn:de:0030-drops-154875
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/15487/
Allender, Eric ;
Gouwar, John ;
Hirahara, Shuichi ;
Robelle, Caleb
Cryptographic Hardness Under Projections for Time-Bounded Kolmogorov Complexity
Abstract
A version of time-bounded Kolmogorov complexity, denoted KT, has received attention in the past several years, due to its close connection to circuit complexity and to the Minimum Circuit Size Problem MCSP. Essentially all results about the complexity of MCSP hold also for MKTP (the problem of computing the KT complexity of a string). Both MKTP and MCSP are hard for SZK (Statistical Zero Knowledge) under BPP-Turing reductions; neither is known to be NP-complete.
Recently, some hardness results for MKTP were proved that are not (yet) known to hold for MCSP. In particular, MKTP is hard for DET (a subclass of P) under nonuniform ≤^{NC^0}_m reductions. In this paper, we improve this, to show that the complement of MKTP is hard for the (apparently larger) class NISZK_L under not only ≤^{NC^0}_m reductions but even under projections. Also, the complement of MKTP is hard for NISZK under ≤^{P/poly}_m reductions. Here, NISZK is the class of problems with non-interactive zero-knowledge proofs, and NISZK_L is the non-interactive version of the class SZK_L that was studied by Dvir et al.
As an application, we provide several improved worst-case to average-case reductions to problems in NP, and we obtain a new lower bound on MKTP (which is currently not known to hold for MCSP).
BibTeX - Entry
@InProceedings{allender_et_al:LIPIcs.ISAAC.2021.54,
author = {Allender, Eric and Gouwar, John and Hirahara, Shuichi and Robelle, Caleb},
title = {{Cryptographic Hardness Under Projections for Time-Bounded Kolmogorov Complexity}},
booktitle = {32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
pages = {54:1--54:17},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-214-3},
ISSN = {1868-8969},
year = {2021},
volume = {212},
editor = {Ahn, Hee-Kap and Sadakane, Kunihiko},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2021/15487},
URN = {urn:nbn:de:0030-drops-154875},
doi = {10.4230/LIPIcs.ISAAC.2021.54},
annote = {Keywords: Kolmogorov Complexity, Interactive Proofs, Minimum Circuit Size Problem, Worst-case to Average-case Reductions}
}
Keywords: |
|
Kolmogorov Complexity, Interactive Proofs, Minimum Circuit Size Problem, Worst-case to Average-case Reductions |
Collection: |
|
32nd International Symposium on Algorithms and Computation (ISAAC 2021) |
Issue Date: |
|
2021 |
Date of publication: |
|
30.11.2021 |