License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ISAAC.2021.58
URN: urn:nbn:de:0030-drops-154919
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/15491/
Go to the corresponding LIPIcs Volume Portal


Le Gall, François ; Miyamoto, Masayuki

Lower Bounds for Induced Cycle Detection in Distributed Computing

pdf-format:
LIPIcs-ISAAC-2021-58.pdf (0.9 MB)


Abstract

The distributed subgraph detection asks, for a fixed graph H, whether the n-node input graph contains H as a subgraph or not. In the standard CONGEST model of distributed computing, the complexity of clique/cycle detection and listing has received a lot of attention recently.
In this paper we consider the induced variant of subgraph detection, where the goal is to decide whether the n-node input graph contains H as an induced subgraph or not. We first show a Ω̃(n) lower bound for detecting the existence of an induced k-cycle for any k ≥ 4 in the CONGEST model. This lower bound is tight for k = 4, and shows that the induced variant of k-cycle detection is much harder than the non-induced version. This lower bound is proved via a reduction from two-party communication complexity. We complement this result by showing that for 5 ≤ k ≤ 7, this Ω̃(n) lower bound cannot be improved via the two-party communication framework.
We then show how to prove stronger lower bounds for larger values of k. More precisely, we show that detecting an induced k-cycle for any k ≥ 8 requires Ω̃(n^{2-Θ{(1/k)}}) rounds in the CONGEST model, nearly matching the known upper bound Õ(n^{2-Θ{(1/k)}}) of the general k-node subgraph detection (which also applies to the induced version) by Eden, Fiat, Fischer, Kuhn, and Oshman [DISC 2019].
Finally, we investigate the case where H is the diamond (the diamond is obtained by adding an edge to a 4-cycle, or equivalently removing an edge from a 4-clique), and show non-trivial upper and lower bounds on the complexity of the induced version of diamond detecting and listing.

BibTeX - Entry

@InProceedings{legall_et_al:LIPIcs.ISAAC.2021.58,
  author =	{Le Gall, Fran\c{c}ois and Miyamoto, Masayuki},
  title =	{{Lower Bounds for Induced Cycle Detection in Distributed Computing}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{58:1--58:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/15491},
  URN =		{urn:nbn:de:0030-drops-154919},
  doi =		{10.4230/LIPIcs.ISAAC.2021.58},
  annote =	{Keywords: Distributed computing, Lower bounds, Subgraph detection}
}

Keywords: Distributed computing, Lower bounds, Subgraph detection
Collection: 32nd International Symposium on Algorithms and Computation (ISAAC 2021)
Issue Date: 2021
Date of publication: 30.11.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI