License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2022.19
URN: urn:nbn:de:0030-drops-156151
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/15615/
Bennett, Huck ;
Peikert, Chris ;
Tang, Yi
Improved Hardness of BDD and SVP Under Gap-(S)ETH
Abstract
We show improved fine-grained hardness of two key lattice problems in the ?_p norm: Bounded Distance Decoding to within an α factor of the minimum distance (BDD_{p, α}) and the (decisional) γ-approximate Shortest Vector Problem (GapSVP_{p,γ}), assuming variants of the Gap (Strong) Exponential Time Hypothesis (Gap-(S)ETH). Specifically, we show:
1) For all p ∈ [1, ∞), there is no 2^{o(n)}-time algorithm for BDD_{p, α} for any constant α > α_kn, where α_kn = 2^{-c_kn} < 0.98491 and c_kn is the ?₂ kissing-number constant, unless non-uniform Gap-ETH is false.
2) For all p ∈ [1, ∞), there is no 2^{o(n)}-time algorithm for BDD_{p, α} for any constant α > α^‡_p, where α^‡_p is explicit and satisfies α^‡_p = 1 for 1 ≤ p ≤ 2, α^‡_p < 1 for all p > 2, and α^‡_p → 1/2 as p → ∞, unless randomized Gap-ETH is false.
3) For all p ∈ [1, ∞) ⧵ 2 ℤ and all C > 1, there is no 2^{n/C}-time algorithm for BDD_{p, α} for any constant α > α^†_{p, C}, where α^†_{p, C} is explicit and satisfies α^†_{p, C} → 1 as C → ∞ for any fixed p ∈ [1, ∞), unless non-uniform Gap-SETH is false.
4) For all p > p₀ ≈ 2.1397, p ∉ 2ℤ, and all C > C_p, there is no 2^{n/C}-time algorithm for GapSVP_{p, γ} for some constant γ > 1, where C_p > 1 is explicit and satisfies C_p → 1 as p → ∞, unless randomized Gap-SETH is false.
Our results for BDD_{p, α} improve and extend work by Aggarwal and Stephens-Davidowitz (STOC, 2018) and Bennett and Peikert (CCC, 2020). Specifically, the quantities α_kn and α^‡_p (respectively, α^†_{p,C}) significantly improve upon the corresponding quantity α_p^* (respectively, α_{p,C}^*) of Bennett and Peikert for small p (but arise from somewhat stronger assumptions). In particular, Item 1 improves the smallest value of α for which BDD_{p, α} is known to be exponentially hard in the Euclidean norm (p = 2) to an explicit constant α < 1 for the first time under a general-purpose complexity assumption. Items 1 and 3 crucially use the recent breakthrough result of Vlăduţ (Moscow Journal of Combinatorics and Number Theory, 2019), which showed an explicit exponential lower bound on the lattice kissing number. Finally, Item 4 answers a natural question left open by Aggarwal, Bennett, Golovnev, and Stephens-Davidowitz (SODA, 2021), which showed an analogous result for the Closest Vector Problem.
BibTeX - Entry
@InProceedings{bennett_et_al:LIPIcs.ITCS.2022.19,
author = {Bennett, Huck and Peikert, Chris and Tang, Yi},
title = {{Improved Hardness of BDD and SVP Under Gap-(S)ETH}},
booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
pages = {19:1--19:12},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-217-4},
ISSN = {1868-8969},
year = {2022},
volume = {215},
editor = {Braverman, Mark},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2022/15615},
URN = {urn:nbn:de:0030-drops-156151},
doi = {10.4230/LIPIcs.ITCS.2022.19},
annote = {Keywords: lattices, lattice-based cryptography, fine-grained complexity, Bounded Distance Decoding, Shortest Vector Problem}
}
Keywords: |
|
lattices, lattice-based cryptography, fine-grained complexity, Bounded Distance Decoding, Shortest Vector Problem |
Collection: |
|
13th Innovations in Theoretical Computer Science Conference (ITCS 2022) |
Issue Date: |
|
2022 |
Date of publication: |
|
25.01.2022 |