License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2022.19
URN: urn:nbn:de:0030-drops-156151
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/15615/
Go to the corresponding LIPIcs Volume Portal


Bennett, Huck ; Peikert, Chris ; Tang, Yi

Improved Hardness of BDD and SVP Under Gap-(S)ETH

pdf-format:
LIPIcs-ITCS-2022-19.pdf (0.7 MB)


Abstract

We show improved fine-grained hardness of two key lattice problems in the ?_p norm: Bounded Distance Decoding to within an α factor of the minimum distance (BDD_{p, α}) and the (decisional) γ-approximate Shortest Vector Problem (GapSVP_{p,γ}), assuming variants of the Gap (Strong) Exponential Time Hypothesis (Gap-(S)ETH). Specifically, we show:
1) For all p ∈ [1, ∞), there is no 2^{o(n)}-time algorithm for BDD_{p, α} for any constant α > α_kn, where α_kn = 2^{-c_kn} < 0.98491 and c_kn is the ?₂ kissing-number constant, unless non-uniform Gap-ETH is false.
2) For all p ∈ [1, ∞), there is no 2^{o(n)}-time algorithm for BDD_{p, α} for any constant α > α^‡_p, where α^‡_p is explicit and satisfies α^‡_p = 1 for 1 ≤ p ≤ 2, α^‡_p < 1 for all p > 2, and α^‡_p → 1/2 as p → ∞, unless randomized Gap-ETH is false.
3) For all p ∈ [1, ∞) ⧵ 2 ℤ and all C > 1, there is no 2^{n/C}-time algorithm for BDD_{p, α} for any constant α > α^†_{p, C}, where α^†_{p, C} is explicit and satisfies α^†_{p, C} → 1 as C → ∞ for any fixed p ∈ [1, ∞), unless non-uniform Gap-SETH is false.
4) For all p > p₀ ≈ 2.1397, p ∉ 2ℤ, and all C > C_p, there is no 2^{n/C}-time algorithm for GapSVP_{p, γ} for some constant γ > 1, where C_p > 1 is explicit and satisfies C_p → 1 as p → ∞, unless randomized Gap-SETH is false.
Our results for BDD_{p, α} improve and extend work by Aggarwal and Stephens-Davidowitz (STOC, 2018) and Bennett and Peikert (CCC, 2020). Specifically, the quantities α_kn and α^‡_p (respectively, α^†_{p,C}) significantly improve upon the corresponding quantity α_p^* (respectively, α_{p,C}^*) of Bennett and Peikert for small p (but arise from somewhat stronger assumptions). In particular, Item 1 improves the smallest value of α for which BDD_{p, α} is known to be exponentially hard in the Euclidean norm (p = 2) to an explicit constant α < 1 for the first time under a general-purpose complexity assumption. Items 1 and 3 crucially use the recent breakthrough result of Vlăduţ (Moscow Journal of Combinatorics and Number Theory, 2019), which showed an explicit exponential lower bound on the lattice kissing number. Finally, Item 4 answers a natural question left open by Aggarwal, Bennett, Golovnev, and Stephens-Davidowitz (SODA, 2021), which showed an analogous result for the Closest Vector Problem.

BibTeX - Entry

@InProceedings{bennett_et_al:LIPIcs.ITCS.2022.19,
  author =	{Bennett, Huck and Peikert, Chris and Tang, Yi},
  title =	{{Improved Hardness of BDD and SVP Under Gap-(S)ETH}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{19:1--19:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/15615},
  URN =		{urn:nbn:de:0030-drops-156151},
  doi =		{10.4230/LIPIcs.ITCS.2022.19},
  annote =	{Keywords: lattices, lattice-based cryptography, fine-grained complexity, Bounded Distance Decoding, Shortest Vector Problem}
}

Keywords: lattices, lattice-based cryptography, fine-grained complexity, Bounded Distance Decoding, Shortest Vector Problem
Collection: 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)
Issue Date: 2022
Date of publication: 25.01.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI