License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2022.38
URN: urn:nbn:de:0030-drops-156342
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/15634/
Go to the corresponding LIPIcs Volume Portal


Chapman, Brynmor ; Williams, R. Ryan

Smaller ACC0 Circuits for Symmetric Functions

pdf-format:
LIPIcs-ITCS-2022-38.pdf (0.7 MB)


Abstract

What is the power of constant-depth circuits with MOD_m gates, that can count modulo m? Can they efficiently compute MAJORITY and other symmetric functions? When m is a constant prime power, the answer is well understood. In this regime, Razborov and Smolensky proved in the 1980s that MAJORITY and MOD_m require super-polynomial-size MOD_q circuits, where q is any prime power not dividing m. However, relatively little is known about the power of MOD_m gates when m is not a prime power. For example, it is still open whether every problem decidable in exponential time can be computed by depth-3 circuits of polynomial-size and only MOD_6 gates.
In this paper, we shed some light on the difficulty of proving lower bounds for MOD_m circuits, by giving new upper bounds. We show how to construct MOD_m circuits computing symmetric functions with non-prime power m, with size-depth tradeoffs that beat the longstanding lower bounds for AC^0[m] circuits when m is a prime power. Furthermore, we observe that our size-depth tradeoff circuits have essentially optimal dependence on m and d in the exponent, under a natural circuit complexity hypothesis.
For example, we show that for every ε > 0, every symmetric function can be computed using MOD_m circuits of depth 3 and 2^{n^ε} size, for a constant m depending only on ε > 0. In other words, depth-3 CC^0 circuits can compute any symmetric function in subexponential size. This demonstrates a significant difference in the power of depth-3 CC^0 circuits, compared to other models: for certain symmetric functions, depth-3 AC^0 circuits require 2^{Ω(√n)} size [Håstad 1986], and depth-3 AC^0[p^k] circuits (for fixed prime power p^k) require 2^{Ω(n^{1/6})} size [Smolensky 1987]. Even for depth-2 MOD_p ∘ MOD_m circuits, 2^{Ω(n)} lower bounds were known [Barrington Straubing Thérien 1990].

BibTeX - Entry

@InProceedings{chapman_et_al:LIPIcs.ITCS.2022.38,
  author =	{Chapman, Brynmor and Williams, R. Ryan},
  title =	{{Smaller ACC0 Circuits for Symmetric Functions}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{38:1--38:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/15634},
  URN =		{urn:nbn:de:0030-drops-156342},
  doi =		{10.4230/LIPIcs.ITCS.2022.38},
  annote =	{Keywords: ACC, CC, circuit complexity, symmetric functions, Chinese Remainder Theorem}
}

Keywords: ACC, CC, circuit complexity, symmetric functions, Chinese Remainder Theorem
Collection: 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)
Issue Date: 2022
Date of publication: 25.01.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI