License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2022.9
URN: urn:nbn:de:0030-drops-158192
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/15819/
Go to the corresponding LIPIcs Volume Portal


Bergé, Pierre ; Ducoffe, Guillaume ; Habib, Michel

Subquadratic-Time Algorithm for the Diameter and All Eccentricities on Median Graphs

pdf-format:
LIPIcs-STACS-2022-9.pdf (0.8 MB)


Abstract

On sparse graphs, Roditty and Williams [2013] proved that no O(n^{2-ε})-time algorithm achieves an approximation factor smaller than 3/2 for the diameter problem unless SETH fails. We answer here an open question formulated in the literature: can we use the structural properties of median graphs to break this global quadratic barrier?
We propose the first combinatorial algorithm computing exactly all eccentricities of a median graph in truly subquadratic time. Median graphs constitute the family of graphs which is the most studied in metric graph theory because their structure represents many other discrete and geometric concepts, such as CAT(0) cube complexes. Our result generalizes a recent one, stating that there is a linear-time algorithm for computing all eccentricities in median graphs with bounded dimension d, i.e. the dimension of the largest induced hypercube (note that 1-dimensional median graphs are exactly the forests). This prerequisite on d is not necessarily anymore to determine all eccentricities in subquadratic time. The execution time of our algorithm is O(n^{1.6456}log^{O(1)} n).

BibTeX - Entry

@InProceedings{berge_et_al:LIPIcs.STACS.2022.9,
  author =	{Berg\'{e}, Pierre and Ducoffe, Guillaume and Habib, Michel},
  title =	{{Subquadratic-Time Algorithm for the Diameter and All Eccentricities on Median Graphs}},
  booktitle =	{39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)},
  pages =	{9:1--9:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-222-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{219},
  editor =	{Berenbrink, Petra and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/15819},
  URN =		{urn:nbn:de:0030-drops-158192},
  doi =		{10.4230/LIPIcs.STACS.2022.9},
  annote =	{Keywords: Diameter, Eccentricities, Metric graph theory, Median graphs, Hypercubes}
}

Keywords: Diameter, Eccentricities, Metric graph theory, Median graphs, Hypercubes
Collection: 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)
Issue Date: 2022
Date of publication: 09.03.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI