License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2022.27
URN: urn:nbn:de:0030-drops-158379
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/15837/
Go to the corresponding LIPIcs Volume Portal


Elkin, Michael ; Neiman, Ofer

Centralized, Parallel, and Distributed Multi-Source Shortest Paths via Hopsets and Rectangular Matrix Multiplication

pdf-format:
LIPIcs-STACS-2022-27.pdf (0.8 MB)


Abstract

Consider an undirected weighted graph G = (V,E,w). We study the problem of computing (1+ε)-approximate shortest paths for S × V, for a subset S ⊆ V of |S| = n^r sources, for some 0 < r ≤ 1. We devise a significantly improved algorithm for this problem in the entire range of parameter r, in both the classical centralized and the parallel (PRAM) models of computation, and in a wide range of r in the distributed (Congested Clique) model. Specifically, our centralized algorithm for this problem requires time Õ(|E| ⋅ n^{o(1)} + n^{ω(r)}), where n^{ω(r)} is the time required to multiply an n^r × n matrix by an n × n one. Our PRAM algorithm has polylogarithmic time (log n)^{O(1/ρ)}, and its work complexity is Õ(|E| ⋅ n^ρ + n^{ω(r)}), for any arbitrarily small constant ρ > 0.
In particular, for r ≤ 0.313…, our centralized algorithm computes S × V (1+ε)-approximate shortest paths in n^{2 + o(1)} time. Our PRAM polylogarithmic-time algorithm has work complexity O(|E| ⋅ n^ρ + n^{2+o(1)}), for any arbitrarily small constant ρ > 0. Previously existing solutions either require centralized time/parallel work of O(|E| ⋅ |S|) or provide much weaker approximation guarantees.
In the Congested Clique model, our algorithm solves the problem in polylogarithmic time for |S| = n^r sources, for r ≤ 0.655, while previous state-of-the-art algorithms did so only for r ≤ 1/2. Moreover, it improves previous bounds for all r > 1/2. For unweighted graphs, the running time is improved further to poly(log log n) for r ≤ 0.655. Previously this running time was known for r ≤ 1/2.

BibTeX - Entry

@InProceedings{elkin_et_al:LIPIcs.STACS.2022.27,
  author =	{Elkin, Michael and Neiman, Ofer},
  title =	{{Centralized, Parallel, and Distributed Multi-Source Shortest Paths via Hopsets and Rectangular Matrix Multiplication}},
  booktitle =	{39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)},
  pages =	{27:1--27:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-222-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{219},
  editor =	{Berenbrink, Petra and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/15837},
  URN =		{urn:nbn:de:0030-drops-158379},
  doi =		{10.4230/LIPIcs.STACS.2022.27},
  annote =	{Keywords: Shortest paths, matrix multiplication, hopsets}
}

Keywords: Shortest paths, matrix multiplication, hopsets
Collection: 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)
Issue Date: 2022
Date of publication: 09.03.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI