License: 
 Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2022.40
URN: urn:nbn:de:0030-drops-158507
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/15850/
 
Kanté, Mamadou Moustapha ; 
Kim, Eun Jung ; 
Kwon, O-joung ; 
Oum, Sang-il 
Obstructions for Matroids of Path-Width at most k and Graphs of Linear Rank-Width at most k
Abstract
Every minor-closed class of matroids of bounded branch-width can be characterized by a minimal list of excluded minors, but unlike graphs, this list could be infinite in general. However, for each fixed finite field F, the list contains only finitely many F-representable matroids, due to the well-quasi-ordering of F-representable matroids of bounded branch-width under taking matroid minors [J. F. Geelen, A. M. H. Gerards, and G. Whittle (2002)]. But this proof is non-constructive and does not provide any algorithm for computing these F-representable excluded minors in general. 
We consider the class of matroids of path-width at most k for fixed k. We prove that for a finite field F, every F-representable excluded minor for the class of matroids of path-width at most k has at most 2^{|?|^{O(k²)}} elements. We can therefore compute, for any integer k and a fixed finite field F, the set of F-representable excluded minors for the class of matroids of path-width k, and this gives as a corollary a polynomial-time algorithm for checking whether the path-width of an F-represented matroid is at most k. We also prove that every excluded pivot-minor for the class of graphs having linear rank-width at most k has at most 2^{2^{O(k²)}} vertices, which also results in a similar algorithmic consequence for linear rank-width of graphs.
BibTeX - Entry
@InProceedings{kante_et_al:LIPIcs.STACS.2022.40,
  author =	{Kant\'{e}, Mamadou Moustapha and Kim, Eun Jung and Kwon, O-joung and Oum, Sang-il},
  title =	{{Obstructions for Matroids of Path-Width at most k and Graphs of Linear Rank-Width at most k}},
  booktitle =	{39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)},
  pages =	{40:1--40:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-222-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{219},
  editor =	{Berenbrink, Petra and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/15850},
  URN =		{urn:nbn:de:0030-drops-158507},
  doi =		{10.4230/LIPIcs.STACS.2022.40},
  annote =	{Keywords: path-width, matroid, linear rank-width, graph, forbidden minor, vertex-minor, pivot-minor}
}
 
| 
Keywords: |  
 | 
path-width, matroid, linear rank-width, graph, forbidden minor, vertex-minor, pivot-minor  | 
 
 
| 
Collection: |  
 | 
39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022) | 
 
 
| 
Issue Date: |  
 | 
2022  | 
 
 
| 
Date of publication: |  
 | 
09.03.2022  |