License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2022.41
URN: urn:nbn:de:0030-drops-158516
Go to the corresponding LIPIcs Volume Portal

Kavitha, Telikepalli

Fairly Popular Matchings and Optimality

LIPIcs-STACS-2022-41.pdf (0.8 MB)


We consider a matching problem in a bipartite graph G = (A ∪ B, E) where vertices have strict preferences over their neighbors. A matching M is popular if for any matching N, the number of vertices that prefer M is at least the number that prefer N; thus M does not lose a head-to-head election against any matching where vertices are voters. It is easy to find popular matchings; however when there are edge costs, it is NP-hard to find (or even approximate) a min-cost popular matching. This hardness motivates relaxations of popularity.
Here we introduce fairly popular matchings. A fairly popular matching may lose elections but there is no good matching (wrt popularity) that defeats a fairly popular matching. In particular, any matching that defeats a fairly popular matching does not occur in the support of any popular mixed matching. We show that a min-cost fairly popular matching can be computed in polynomial time and the fairly popular matching polytope has a compact extended formulation.
We also show the following hardness result: given a matching M, it is NP-complete to decide if there exists a popular matching that defeats M. Interestingly, there exists a set K of at most m popular matchings in G (where |E| = m) such that if a matching is defeated by some popular matching in G then it has to be defeated by one of the matchings in K.

BibTeX - Entry

  author =	{Kavitha, Telikepalli},
  title =	{{Fairly Popular Matchings and Optimality}},
  booktitle =	{39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)},
  pages =	{41:1--41:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-222-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{219},
  editor =	{Berenbrink, Petra and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-158516},
  doi =		{10.4230/LIPIcs.STACS.2022.41},
  annote =	{Keywords: Bipartite graphs, Stable matchings, Mixed matchings, Polytopes}

Keywords: Bipartite graphs, Stable matchings, Mixed matchings, Polytopes
Collection: 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)
Issue Date: 2022
Date of publication: 09.03.2022

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI