License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2022.21
URN: urn:nbn:de:0030-drops-160294
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16029/
Bringmann, Karl ;
Kisfaludi‑Bak, Sándor ;
Künnemann, Marvin ;
Nusser, André ;
Parsaeian, Zahra
Towards Sub-Quadratic Diameter Computation in Geometric Intersection Graphs
Abstract
We initiate the study of diameter computation in geometric intersection graphs from the fine-grained complexity perspective. A geometric intersection graph is a graph whose vertices correspond to some shapes in d-dimensional Euclidean space, such as balls, segments, or hypercubes, and whose edges correspond to pairs of intersecting shapes. The diameter of a graph is the largest distance realized by a pair of vertices in the graph.
Computing the diameter in near-quadratic time is possible in several classes of intersection graphs [Chan and Skrepetos 2019], but it is not at all clear if these algorithms are optimal, especially since in the related class of planar graphs the diameter can be computed in ?̃(n^{5/3}) time [Cabello 2019, Gawrychowski et al. 2021].
In this work we (conditionally) rule out sub-quadratic algorithms in several classes of intersection graphs, i.e., algorithms of running time ?(n^{2-δ}) for some δ > 0. In particular, there are no sub-quadratic algorithms already for fat objects in small dimensions: unit balls in ℝ³ or congruent equilateral triangles in ℝ². For unit segments and congruent equilateral triangles, we can even rule out strong sub-quadratic approximations already in ℝ². It seems that the hardness of approximation may also depend on dimensionality: for axis-parallel unit hypercubes in ℝ^{12}, distinguishing between diameter 2 and 3 needs quadratic time (ruling out (3/2-ε)- approximations), whereas for axis-parallel unit squares, we give an algorithm that distinguishes between diameter 2 and 3 in near-linear time.
Note that many of our lower bounds match the best known algorithms up to sub-polynomial factors. Ultimately, this fine-grained perspective may enable us to determine for which shapes we can have efficient algorithms and approximation schemes for diameter computation.
BibTeX - Entry
@InProceedings{bringmann_et_al:LIPIcs.SoCG.2022.21,
author = {Bringmann, Karl and Kisfaludi‑Bak, S\'{a}ndor and K\"{u}nnemann, Marvin and Nusser, Andr\'{e} and Parsaeian, Zahra},
title = {{Towards Sub-Quadratic Diameter Computation in Geometric Intersection Graphs}},
booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)},
pages = {21:1--21:16},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-227-3},
ISSN = {1868-8969},
year = {2022},
volume = {224},
editor = {Goaoc, Xavier and Kerber, Michael},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2022/16029},
URN = {urn:nbn:de:0030-drops-160294},
doi = {10.4230/LIPIcs.SoCG.2022.21},
annote = {Keywords: Hardness in P, Geometric Intersection Graph, Graph Diameter, Orthogonal Vectors, Hyperclique Detection}
}
Keywords: |
|
Hardness in P, Geometric Intersection Graph, Graph Diameter, Orthogonal Vectors, Hyperclique Detection |
Collection: |
|
38th International Symposium on Computational Geometry (SoCG 2022) |
Issue Date: |
|
2022 |
Date of publication: |
|
01.06.2022 |