License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2022.28
URN: urn:nbn:de:0030-drops-160365
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16036/
Go to the corresponding LIPIcs Volume Portal


Chitnis, Rajesh ; Saurabh, Nitin

Tight Lower Bounds for Approximate & Exact k-Center in ℝ^d

pdf-format:
LIPIcs-SoCG-2022-28.pdf (0.8 MB)


Abstract

In the discrete k-Center problem, we are given a metric space (P,dist) where |P| = n and the goal is to select a set C ⊆ P of k centers which minimizes the maximum distance of a point in P from its nearest center. For any ε > 0, Agarwal and Procopiuc [SODA '98, Algorithmica '02] designed an (1+ε)-approximation algorithm for this problem in d-dimensional Euclidean space which runs in O(dn log k) + (k/ε)^{O (k^{1-1/d})}⋅ n^{O(1)} time. In this paper we show that their algorithm is essentially optimal: if for some d ≥ 2 and some computable function f, there is an f(k)⋅(1/ε)^{o (k^{1-1/d})} ⋅ n^{o (k^{1-1/d})} time algorithm for (1+ε)-approximating the discrete k-Center on n points in d-dimensional Euclidean space then the Exponential Time Hypothesis (ETH) fails.
We obtain our lower bound by designing a gap reduction from a d-dimensional constraint satisfaction problem (CSP) to discrete d-dimensional k-Center. This reduction has the property that there is a fixed value ε (depending on the CSP) such that the optimal radius of k-Center instances corresponding to satisfiable and unsatisfiable instances of the CSP is < 1 and ≥ (1+ε) respectively. Our claimed lower bound on the running time for approximating discrete k-Center in d-dimensions then follows from the lower bound due to Marx and Sidiropoulos [SoCG '14] for checking the satisfiability of the aforementioned d-dimensional CSP.
As a byproduct of our reduction, we also obtain that the exact algorithm of Agarwal and Procopiuc [SODA '98, Algorithmica '02] which runs in n^{O (d⋅ k^{1-1/d})} time for discrete k-Center on n points in d-dimensional Euclidean space is asymptotically optimal. Formally, we show that if for some d ≥ 2 and some computable function f, there is an f(k)⋅n^{o (k^{1-1/d})} time exact algorithm for the discrete k-Center problem on n points in d-dimensional Euclidean space then the Exponential Time Hypothesis (ETH) fails. Previously, such a lower bound was only known for d = 2 and was implicit in the work of Marx [IWPEC '06].

BibTeX - Entry

@InProceedings{chitnis_et_al:LIPIcs.SoCG.2022.28,
  author =	{Chitnis, Rajesh and Saurabh, Nitin},
  title =	{{Tight Lower Bounds for Approximate \& Exact k-Center in \mathbb{R}^d}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{28:1--28:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16036},
  URN =		{urn:nbn:de:0030-drops-160365},
  doi =		{10.4230/LIPIcs.SoCG.2022.28},
  annote =	{Keywords: k-center, Euclidean space, Exponential Time Hypothesis (ETH), lower bound}
}

Keywords: k-center, Euclidean space, Exponential Time Hypothesis (ETH), lower bound
Collection: 38th International Symposium on Computational Geometry (SoCG 2022)
Issue Date: 2022
Date of publication: 01.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI