License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2022.66
URN: urn:nbn:de:0030-drops-160744
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16074/
Go to the corresponding LIPIcs Volume Portal


Chambers, Erin ; Fillmore, Christopher ; Stephenson, Elizabeth ; Wintraecken, Mathijs

A Cautionary Tale: Burning the Medial Axis Is Unstable (Media Exposition)

pdf-format:
LIPIcs-SoCG-2022-66.pdf (17 MB)


Abstract

The medial axis of a set consists of the points in the ambient space without a unique closest point on the original set. Since its introduction, the medial axis has been used extensively in many applications as a method of computing a topologically equivalent skeleton. Unfortunately, one limiting factor in the use of the medial axis of a smooth manifold is that it is not necessarily topologically stable under small perturbations of the manifold. To counter these instabilities various prunings of the medial axis have been proposed. Here, we examine one type of pruning, called burning. Because of the good experimental results, it was hoped that the burning method of simplifying the medial axis would be stable. In this work we show a simple example that dashes such hopes based on Bing’s house with two rooms, demonstrating an isotopy of a shape where the medial axis goes from collapsible to non-collapsible.

BibTeX - Entry

@InProceedings{chambers_et_al:LIPIcs.SoCG.2022.66,
  author =	{Chambers, Erin and Fillmore, Christopher and Stephenson, Elizabeth and Wintraecken, Mathijs},
  title =	{{A Cautionary Tale: Burning the Medial Axis Is Unstable}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{66:1--66:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16074},
  URN =		{urn:nbn:de:0030-drops-160744},
  doi =		{10.4230/LIPIcs.SoCG.2022.66},
  annote =	{Keywords: Medial axis, Collapse, Pruning, Burning, Stability}
}

Keywords: Medial axis, Collapse, Pruning, Burning, Stability
Collection: 38th International Symposium on Computational Geometry (SoCG 2022)
Issue Date: 2022
Date of publication: 01.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI