License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CPM.2022.10
URN: urn:nbn:de:0030-drops-161376
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16137/
Go to the corresponding LIPIcs Volume Portal


Levy, Avivit ; Porat, Ely ; Shalom, B. Riva

Partial Permutations Comparison, Maintenance and Applications

pdf-format:
LIPIcs-CPM-2022-10.pdf (0.8 MB)


Abstract

This paper focuses on the concept of partial permutations and their use in algorithmic tasks. A partial permutation over Σ is a bijection π_{par}: Σ₁↦Σ₂ mapping a subset Σ₁ ⊂ Σ to a subset Σ₂ ⊂ Σ, where |Σ₁| = |Σ₂| (|Σ| denotes the size of a set Σ). Intuitively, two partial permutations agree if their mapping pairs do not form conflicts. This notion, which is formally defined in this paper, enables a consistent as well as informatively rich comparison between partial permutations. We formalize the Partial Permutations Agreement problem (PPA), as follows. Given two sets A₁, A₂ of partial permutations over alphabet Σ, each of size n, output all pairs (π_i, π_j), where π_i ∈ A₁, π_j ∈ A₂ and π_i agrees with π_j. The possibility of having a data structure for efficiently maintaining a dynamic set of partial permutations enabling to retrieve agreement of partial permutations is then studied, giving both negative and positive results. Applying our study enables to point out fruitful versus futile methods for efficient genes sequences comparison in database or automatic color transformation data augmentation technique for image processing through neural networks. It also shows that an efficient solution of strict Parameterized Dictionary Matching with One Gap (PDMOG) over general dictionary alphabets is not likely, unless the Strong Exponential Time Hypothesis (SETH) fails, thus negatively answering an open question posed lately.

BibTeX - Entry

@InProceedings{levy_et_al:LIPIcs.CPM.2022.10,
  author =	{Levy, Avivit and Porat, Ely and Shalom, B. Riva},
  title =	{{Partial Permutations Comparison, Maintenance and Applications}},
  booktitle =	{33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)},
  pages =	{10:1--10:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-234-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{223},
  editor =	{Bannai, Hideo and Holub, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16137},
  URN =		{urn:nbn:de:0030-drops-161376},
  doi =		{10.4230/LIPIcs.CPM.2022.10},
  annote =	{Keywords: Partial permutations, Partial words, Genes comparison, Color transformation, Dictionary matching with gaps, Parameterized matching, SETH hypothesis}
}

Keywords: Partial permutations, Partial words, Genes comparison, Color transformation, Dictionary matching with gaps, Parameterized matching, SETH hypothesis
Collection: 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)
Issue Date: 2022
Date of publication: 22.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI