License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SWAT.2022.16
URN: urn:nbn:de:0030-drops-161766
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16176/
Bergold, Helena ;
Bertschinger, Daniel ;
Grelier, Nicolas ;
Mulzer, Wolfgang ;
Schnider, Patrick
Well-Separation and Hyperplane Transversals in High Dimensions
Abstract
A family of k point sets in d dimensions is well-separated if the convex hulls of any two disjoint subfamilies can be separated by a hyperplane. Well-separation is a strong assumption that allows us to conclude that certain kinds of generalized ham-sandwich cuts for the point sets exist. But how hard is it to check if a given family of high-dimensional point sets has this property? Starting from this question, we study several algorithmic aspects of the existence of transversals and separations in high-dimensions.
First, we give an explicit proof that k point sets are well-separated if and only if their convex hulls admit no (k - 2)-transversal, i.e., if there exists no (k - 2)-dimensional flat that intersects the convex hulls of all k sets. It follows that the task of checking well-separation lies in the complexity class coNP. Next, we show that it is NP-hard to decide whether there is a hyperplane-transversal (that is, a (d - 1)-transversal) of a family of d + 1 line segments in ℝ^d, where d is part of the input. As a consequence, it follows that the general problem of testing well-separation is coNP-complete. Furthermore, we show that finding a hyperplane that maximizes the number of intersected sets is NP-hard, but allows for an Ω((log k)/(k log log k))-approximation algorithm that is polynomial in d and k, when each set consists of a single point. When all point sets are finite, we show that checking whether there exists a (k - 2)-transversal is in fact strongly NP-complete.
Finally, we take the viewpoint of parametrized complexity, using the dimension d as a parameter: given k convex sets in ℝ^d, checking whether there is a (k-2)-transversal is FPT with respect to d. On the other hand, for k ≥ d+1 finite point sets in ℝ^d, it turns out that checking whether there is a (d-1)-transversal is W[1]-hard with respect to d.
BibTeX - Entry
@InProceedings{bergold_et_al:LIPIcs.SWAT.2022.16,
author = {Bergold, Helena and Bertschinger, Daniel and Grelier, Nicolas and Mulzer, Wolfgang and Schnider, Patrick},
title = {{Well-Separation and Hyperplane Transversals in High Dimensions}},
booktitle = {18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)},
pages = {16:1--16:14},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-236-5},
ISSN = {1868-8969},
year = {2022},
volume = {227},
editor = {Czumaj, Artur and Xin, Qin},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2022/16176},
URN = {urn:nbn:de:0030-drops-161766},
doi = {10.4230/LIPIcs.SWAT.2022.16},
annote = {Keywords: hyperplane transversal, high-dimension, hardness}
}
Keywords: |
|
hyperplane transversal, high-dimension, hardness |
Collection: |
|
18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022) |
Issue Date: |
|
2022 |
Date of publication: |
|
22.06.2022 |