Abstract
This paper presents an application of an optimized
implementation of a probabilistic description logic defined
by Giugno and Lukasiewicz [9] to the domain of
image interpretation. This approach extends a description
logic with so-called probabilistic constraints
to allow for automated reasoning over formal ontologies
in combination with probabilistic knowledge. We
analyze the performance of current algorithms and investigate
new optimization techniques.
BibTeX - Entry
@InProceedings{moller_et_al:DagSemProc.08091.8,
author = {M\"{o}ller, Ralf and N\"{a}th, Tobias H.},
title = {{Implementing probabilistic description logics: An application to image interpretation}},
booktitle = {Logic and Probability for Scene Interpretation},
pages = {1--6},
series = {Dagstuhl Seminar Proceedings (DagSemProc)},
ISSN = {1862-4405},
year = {2008},
volume = {8091},
editor = {Anthony G. Cohn and David C. Hogg and Ralf M\"{o}ller and Bernd Neumann},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2008/1618},
URN = {urn:nbn:de:0030-drops-16186},
doi = {10.4230/DagSemProc.08091.8},
annote = {Keywords: Probabilistic description logics, image interpretation probabilistic lexicographic entailment}
}
Keywords: |
|
Probabilistic description logics, image interpretation probabilistic lexicographic entailment |
Collection: |
|
08091 - Logic and Probability for Scene Interpretation |
Issue Date: |
|
2008 |
Date of publication: |
|
23.10.2008 |