License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SWAT.2022.31
URN: urn:nbn:de:0030-drops-161916
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16191/
Go to the corresponding LIPIcs Volume Portal


Rahman, Md Lutfar ; Watson, Thomas

Erdős-Selfridge Theorem for Nonmonotone CNFs

pdf-format:
LIPIcs-SWAT-2022-31.pdf (0.6 MB)


Abstract

In an influential paper, Erdős and Selfridge introduced the Maker-Breaker game played on a hypergraph, or equivalently, on a monotone CNF. The players take turns assigning values to variables of their choosing, and Breaker’s goal is to satisfy the CNF, while Maker’s goal is to falsify it. The Erdős-Selfridge Theorem says that the least number of clauses in any monotone CNF with k literals per clause where Maker has a winning strategy is Θ(2^k).
We study the analogous question when the CNF is not necessarily monotone. We prove bounds of Θ(√2 ^k) when Maker plays last, and Ω(1.5^k) and O(r^k) when Breaker plays last, where r = (1+√5)/2≈ 1.618 is the golden ratio.

BibTeX - Entry

@InProceedings{rahman_et_al:LIPIcs.SWAT.2022.31,
  author =	{Rahman, Md Lutfar and Watson, Thomas},
  title =	{{Erd\H{o}s-Selfridge Theorem for Nonmonotone CNFs}},
  booktitle =	{18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)},
  pages =	{31:1--31:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-236-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{227},
  editor =	{Czumaj, Artur and Xin, Qin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16191},
  URN =		{urn:nbn:de:0030-drops-161916},
  doi =		{10.4230/LIPIcs.SWAT.2022.31},
  annote =	{Keywords: Game, nonmonotone, CNFs}
}

Keywords: Game, nonmonotone, CNFs
Collection: 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)
Issue Date: 2022
Date of publication: 22.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI