License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ECOOP.2022.30
URN: urn:nbn:de:0030-drops-162581
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16258/
Go to the corresponding LIPIcs Volume Portal


He, Dongjie ; Lu, Jingbo ; Xue, Jingling

Qilin: A New Framework For Supporting Fine-Grained Context-Sensitivity in Java Pointer Analysis

pdf-format:
LIPIcs-ECOOP-2022-30.pdf (1 MB)


Abstract

Existing whole-program context-sensitive pointer analysis frameworks for Java, which were open-sourced over one decade ago, were designed and implemented to support only method-level context-sensitivity (where all the variables/objects in a method are qualified by a common context abstraction representing a context under which the method is analyzed). We introduce Qilin as a generalized (modern) alternative, which has been open-sourced on GitHub, to support the current research trend on exploring fine-grained context-sensitivity (including variable-level context-sensitivity where different variables/objects in a method can be analyzed under different context abstractions at the variable level), precisely, efficiently, and modularly. To meet these four design goals, Qilin is developed as an imperative framework (implemented in Java) consisting of a fine-grained pointer analysis kernel with parameterized context-sensitivity that supports on-the-fly call graph construction and exception analysis, solved iteratively based on a new carefully-crafted incremental worklist-based constraint solver, on top of its handlers for complex Java features.
We have evaluated Qilin extensively using a set of 12 representative Java programs (popularly used in the literature). For method-level context-sensitive analyses, we compare Qilin with Doop (a declarative framework that defines the state-of-the-art), Qilin yields logically the same precision but more efficiently (e.g., 2.4x faster for four typical baselines considered, on average). For fine-grained context-sensitive analyses (which are not currently supported by open-source Java pointer analysis frameworks such as Doop), we show that Qilin allows seven recent approaches to be instantiated effectively in our parameterized framework, requiring additionally only an average of 50 LOC each.

BibTeX - Entry

@InProceedings{he_et_al:LIPIcs.ECOOP.2022.30,
  author =	{He, Dongjie and Lu, Jingbo and Xue, Jingling},
  title =	{{Qilin: A New Framework For Supporting Fine-Grained Context-Sensitivity in Java Pointer Analysis}},
  booktitle =	{36th European Conference on Object-Oriented Programming (ECOOP 2022)},
  pages =	{30:1--30:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-225-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{222},
  editor =	{Ali, Karim and Vitek, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16258},
  URN =		{urn:nbn:de:0030-drops-162581},
  doi =		{10.4230/LIPIcs.ECOOP.2022.30},
  annote =	{Keywords: Pointer Analysis, Fine-Grained Context Sensitivity}
}

Keywords: Pointer Analysis, Fine-Grained Context Sensitivity
Collection: 36th European Conference on Object-Oriented Programming (ECOOP 2022)
Issue Date: 2022
Date of publication: 23.06.2022
Supplementary Material: Software (ECOOP 2022 Artifact Evaluation approved artifact): https://doi.org/10.4230/DARTS.8.2.6


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI