License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.FSCD.2022.5
URN: urn:nbn:de:0030-drops-162869
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16286/
Go to the corresponding LIPIcs Volume Portal


Sterling, Jonathan ; Harper, Robert

Sheaf Semantics of Termination-Insensitive Noninterference

pdf-format:
LIPIcs-FSCD-2022-5.pdf (0.9 MB)


Abstract

We propose a new sheaf semantics for secure information flow over a space of abstract behaviors, based on synthetic domain theory: security classes are open/closed partitions, types are sheaves, and redaction of sensitive information corresponds to restricting a sheaf to a closed subspace. Our security-aware computational model satisfies termination-insensitive noninterference automatically, and therefore constitutes an intrinsic alternative to state of the art extrinsic/relational models of noninterference. Our semantics is the latest application of Sterling and Harper’s recent re-interpretation of phase distinctions and noninterference in programming languages in terms of Artin gluing and topos-theoretic open/closed modalities. Prior applications include parametricity for ML modules, the proof of normalization for cubical type theory by Sterling and Angiuli, and the cost-aware logical framework of Niu et al. In this paper we employ the phase distinction perspective twice: first to reconstruct the syntax and semantics of secure information flow as a lattice of phase distinctions between "higher" and "lower" security, and second to verify the computational adequacy of our sheaf semantics with respect to a version of Abadi et al.’s dependency core calculus to which we have added a construct for declassifying termination channels.

BibTeX - Entry

@InProceedings{sterling_et_al:LIPIcs.FSCD.2022.5,
  author =	{Sterling, Jonathan and Harper, Robert},
  title =	{{Sheaf Semantics of Termination-Insensitive Noninterference}},
  booktitle =	{7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-233-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{228},
  editor =	{Felty, Amy P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16286},
  URN =		{urn:nbn:de:0030-drops-162869},
  doi =		{10.4230/LIPIcs.FSCD.2022.5},
  annote =	{Keywords: information flow, noninterference, denotational semantics, phase distinction, Artin gluing, modal type theory, topos theory, synthetic domain theory, synthetic Tait computability}
}

Keywords: information flow, noninterference, denotational semantics, phase distinction, Artin gluing, modal type theory, topos theory, synthetic domain theory, synthetic Tait computability
Collection: 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)
Issue Date: 2022
Date of publication: 28.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI