License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2022.14
URN: urn:nbn:de:0030-drops-163556
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16355/
Bansal, Nikhil ;
Jiang, Haotian ;
Meka, Raghu ;
Singla, Sahil ;
Sinha, Makrand
Smoothed Analysis of the Komlós Conjecture
Abstract
The well-known Komlós conjecture states that given n vectors in ℝ^d with Euclidean norm at most one, there always exists a ± 1 coloring such that the ?_∞ norm of the signed-sum vector is a constant independent of n and d. We prove this conjecture in a smoothed analysis setting where the vectors are perturbed by adding a small Gaussian noise and when the number of vectors n = ω(d log d). The dependence of n on d is the best possible even in a completely random setting.
Our proof relies on a weighted second moment method, where instead of considering uniformly randomly colorings we apply the second moment method on an implicit distribution on colorings obtained by applying the Gram-Schmidt walk algorithm to a suitable set of vectors. The main technical idea is to use various properties of these colorings, including subgaussianity, to control the second moment.
BibTeX - Entry
@InProceedings{bansal_et_al:LIPIcs.ICALP.2022.14,
author = {Bansal, Nikhil and Jiang, Haotian and Meka, Raghu and Singla, Sahil and Sinha, Makrand},
title = {{Smoothed Analysis of the Koml\'{o}s Conjecture}},
booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
pages = {14:1--14:12},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-235-8},
ISSN = {1868-8969},
year = {2022},
volume = {229},
editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2022/16355},
URN = {urn:nbn:de:0030-drops-163556},
doi = {10.4230/LIPIcs.ICALP.2022.14},
annote = {Keywords: Koml\'{o}s conjecture, smoothed analysis, weighted second moment method, subgaussian coloring}
}
Keywords: |
|
Komlós conjecture, smoothed analysis, weighted second moment method, subgaussian coloring |
Collection: |
|
49th International Colloquium on Automata, Languages, and Programming (ICALP 2022) |
Issue Date: |
|
2022 |
Date of publication: |
|
28.06.2022 |