License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2022.18
URN: urn:nbn:de:0030-drops-163595
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16359/
Go to the corresponding LIPIcs Volume Portal


Bergé, Pierre ; Bonnet, Édouard ; Déprés, Hugues

Deciding Twin-Width at Most 4 Is NP-Complete

pdf-format:
LIPIcs-ICALP-2022-18.pdf (0.8 MB)


Abstract

We show that determining if an n-vertex graph has twin-width at most 4 is NP-complete, and requires time 2^Ω(n/log n) unless the Exponential-Time Hypothesis fails. Along the way, we give an elementary proof that n-vertex graphs subdivided at least 2 log n times have twin-width at most 4. We also show how to encode trigraphs H (2-edge colored graphs involved in the definition of twin-width) into graphs G, in the sense that every d-sequence (sequence of vertex contractions witnessing that the twin-width is at most d) of G inevitably creates H as an induced subtrigraph, whereas there exists a partial d-sequence that actually goes from G to H. We believe that these facts and their proofs can be of independent interest.

BibTeX - Entry

@InProceedings{berge_et_al:LIPIcs.ICALP.2022.18,
  author =	{Berg\'{e}, Pierre and Bonnet, \'{E}douard and D\'{e}pr\'{e}s, Hugues},
  title =	{{Deciding Twin-Width at Most 4 Is NP-Complete}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{18:1--18:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16359},
  URN =		{urn:nbn:de:0030-drops-163595},
  doi =		{10.4230/LIPIcs.ICALP.2022.18},
  annote =	{Keywords: Twin-width, lower bounds}
}

Keywords: Twin-width, lower bounds
Collection: 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)
Issue Date: 2022
Date of publication: 28.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI