License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2022.20
URN: urn:nbn:de:0030-drops-163611
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16361/
Go to the corresponding LIPIcs Volume Portal


Bernstein, Aaron ; van den Brand, Jan ; Probst Gutenberg, Maximilian ; Nanongkai, Danupon ; Saranurak, Thatchaphol ; Sidford, Aaron ; Sun, He

Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary

pdf-format:
LIPIcs-ICALP-2022-20.pdf (0.7 MB)


Abstract

Designing efficient dynamic graph algorithms against an adaptive adversary is a major goal in the field of dynamic graph algorithms and has witnessed many exciting recent developments in, e.g., dynamic matching (Wajc STOC'20) and decremental shortest paths (Chuzhoy and Khanna STOC'19). Compared to other graph primitives (e.g. spanning trees and matchings), designing such algorithms for graph spanners and (more broadly) graph sparsifiers poses a unique challenge since there is no fast deterministic algorithm known for static computation and the lack of a way to adjust the output slowly (known as "small recourse/replacements").
This paper presents the first non-trivial efficient adaptive algorithms for maintaining many sparsifiers against an adaptive adversary. Specifically, we present algorithms that maintain
1) a polylog(n)-spanner of size Õ(n) in polylog(n) amortized update time,
2) an O(k)-approximate cut sparsifier of size Õ(n) in Õ(n^{1/k}) amortized update time, and
3) a polylog(n)-approximate spectral sparsifier in polylog(n) amortized update time. Our bounds are the first non-trivial ones even when only the recourse is concerned. Our results hold even against a stronger adversary, who can access the random bits previously used by the algorithms and the amortized update time of all algorithms can be made worst-case by paying sub-polynomial factors. Our spanner result resolves an open question by Ahmed et al. (2019) and our results and techniques imply additional improvements over existing results, including (i) answering open questions about decremental single-source shortest paths by Chuzhoy and Khanna (STOC'19) and Gutenberg and Wulff-Nilsen (SODA'20), implying a nearly-quadratic time algorithm for approximating minimum-cost unit-capacity flow and (ii) de-amortizing a result of Abraham et al. (FOCS'16) for dynamic spectral sparsifiers.
Our results are based on two novel techniques. The first technique is a generic black-box reduction that allows us to assume that the graph is initially an expander with almost uniform-degree and, more importantly, stays as an almost uniform-degree expander while undergoing only edge deletions. The second technique is called proactive resampling: here we constantly re-sample parts of the input graph so that, independent of an adversary’s computational power, a desired structure of the underlying graph can be always maintained. Despite its simplicity, the analysis of this sampling scheme is far from trivial, because the adversary can potentially create dependencies between the random choices used by the algorithm. We believe these two techniques could be useful for developing other adaptive algorithms.

BibTeX - Entry

@InProceedings{bernstein_et_al:LIPIcs.ICALP.2022.20,
  author =	{Bernstein, Aaron and van den Brand, Jan and Probst Gutenberg, Maximilian and Nanongkai, Danupon and Saranurak, Thatchaphol and Sidford, Aaron and Sun, He},
  title =	{{Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16361},
  URN =		{urn:nbn:de:0030-drops-163611},
  doi =		{10.4230/LIPIcs.ICALP.2022.20},
  annote =	{Keywords: dynamic graph algorithm, adaptive adversary, spanner, sparsifier}
}

Keywords: dynamic graph algorithm, adaptive adversary, spanner, sparsifier
Collection: 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)
Issue Date: 2022
Date of publication: 28.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI