License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2022.25
URN: urn:nbn:de:0030-drops-163662
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16366/
Blikstad, Joakim
Sublinear-Round Parallel Matroid Intersection
Abstract
Despite a lot of recent progress in obtaining faster sequential matroid intersection algorithms, the fastest parallel poly(n)-query algorithm was still the straightforward O(n)-round parallel implementation of Edmonds' augmenting paths algorithm from the 1960s.
Very recently, Chakrabarty-Chen-Khanna [FOCS'21] showed the lower bound that any, possibly randomized, parallel matroid intersection algorithm making poly(n) rank-queries requires Ω̃(n^{1/3}) rounds of adaptivity. They ask, as an open question, if the lower bound can be improved to Ω̃(n), or if there can be sublinear-round, poly(n)-query algorithms for matroid intersection.
We resolve this open problem by presenting the first sublinear-round parallel matroid intersection algorithms. Perhaps surprisingly, we do not only break the Õ(n)-barrier in the rank-oracle model, but also in the weaker independence-oracle model. Our rank-query algorithm guarantees O(n^{3/4}) rounds of adaptivity, while the independence-query algorithm uses O(n^{7/8}) rounds of adaptivity, both making a total of poly(n) queries.
BibTeX - Entry
@InProceedings{blikstad:LIPIcs.ICALP.2022.25,
author = {Blikstad, Joakim},
title = {{Sublinear-Round Parallel Matroid Intersection}},
booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
pages = {25:1--25:17},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-235-8},
ISSN = {1868-8969},
year = {2022},
volume = {229},
editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2022/16366},
URN = {urn:nbn:de:0030-drops-163662},
doi = {10.4230/LIPIcs.ICALP.2022.25},
annote = {Keywords: Matroid Intersection, Combinatorial Optimization, Parallel Algorithms}
}
Keywords: |
|
Matroid Intersection, Combinatorial Optimization, Parallel Algorithms |
Collection: |
|
49th International Colloquium on Automata, Languages, and Programming (ICALP 2022) |
Issue Date: |
|
2022 |
Date of publication: |
|
28.06.2022 |