License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2022.29
URN: urn:nbn:de:0030-drops-163702
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16370/
Go to the corresponding LIPIcs Volume Portal


Briański, Marcin ; Koutecký, Martin ; Král', Daniel ; Pekárková, Kristýna ; Schröder, Felix

Characterization of Matrices with Bounded Graver Bases and Depth Parameters and Applications to Integer Programming

pdf-format:
LIPIcs-ICALP-2022-29.pdf (0.7 MB)


Abstract

An intensive line of research on fixed parameter tractability of integer programming is focused on exploiting the relation between the sparsity of a constraint matrix A and the norm of the elements of its Graver basis. In particular, integer programming is fixed parameter tractable when parameterized by the primal tree-depth and the entry complexity of A, and when parameterized by the dual tree-depth and the entry complexity of A; both these parameterization imply that A is sparse, in particular, the number of its non-zero entries is linear in the number of columns or rows, respectively.
We study preconditioners transforming a given matrix to an equivalent sparse matrix if it exists and provide structural results characterizing the existence of a sparse equivalent matrix in terms of the structural properties of the associated column matroid. In particular, our results imply that the ?₁-norm of the Graver basis is bounded by a function of the maximum ?₁-norm of a circuit of A. We use our results to design a parameterized algorithm that constructs a matrix equivalent to an input matrix A that has small primal/dual tree-depth and entry complexity if such an equivalent matrix exists.
Our results yield parameterized algorithms for integer programming when parameterized by the ?₁-norm of the Graver basis of the constraint matrix, when parameterized by the ?₁-norm of the circuits of the constraint matrix, when parameterized by the smallest primal tree-depth and entry complexity of a matrix equivalent to the constraint matrix, and when parameterized by the smallest dual tree-depth and entry complexity of a matrix equivalent to the constraint matrix.

BibTeX - Entry

@InProceedings{brianski_et_al:LIPIcs.ICALP.2022.29,
  author =	{Bria\'{n}ski, Marcin and Kouteck\'{y}, Martin and Kr\'{a}l', Daniel and Pek\'{a}rkov\'{a}, Krist\'{y}na and Schr\"{o}der, Felix},
  title =	{{Characterization of Matrices with Bounded Graver Bases and Depth Parameters and Applications to Integer Programming}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{29:1--29:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16370},
  URN =		{urn:nbn:de:0030-drops-163702},
  doi =		{10.4230/LIPIcs.ICALP.2022.29},
  annote =	{Keywords: Integer programming, width parameters, matroids, Graver basis, tree-depth, fixed parameter tractability}
}

Keywords: Integer programming, width parameters, matroids, Graver basis, tree-depth, fixed parameter tractability
Collection: 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)
Issue Date: 2022
Date of publication: 28.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI