License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2022.35
URN: urn:nbn:de:0030-drops-163768
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16376/
Chakraborty, Diptarka ;
Chatterjee, Kushagra ;
Choudhary, Keerti
Pairwise Reachability Oracles and Preservers Under Failures
Abstract
In this paper, we consider reachability oracles and reachability preservers for directed graphs/networks prone to edge/node failures. Let G = (V, E) be a directed graph on n-nodes, and P ⊆ V× V be a set of vertex pairs in G. We present the first non-trivial constructions of single and dual fault-tolerant pairwise reachability oracle with constant query time. Furthermore, we provide extremal bounds for sparse fault-tolerant reachability preservers, resilient to two or more failures. Prior to this work, such oracles and reachability preservers were widely studied for the special scenario of single-source and all-pairs settings. However, for the scenario of arbitrary pairs, no prior (non-trivial) results were known for dual (or more) failures, except those implied from the single-source setting. One of the main questions is whether it is possible to beat the O(n |P|) size bound (derived from the single-source setting) for reachability oracle and preserver for dual failures (or O(2^k n|P|) bound for k failures). We answer this question affirmatively. Below we summarize our contributions.
- For an n-vertex directed graph G = (V, E) and P ⊆ V× V, we present a construction of O(n √{|P|}) sized dual fault-tolerant pairwise reachability oracle with constant query time. We further provide a matching (up to the word size) lower bound of Ω(n √{|P|}) on the size (in bits) of the oracle for the dual fault setting, thereby proving that our oracle is (near-)optimal.
- Next, we provide a construction of O(n + min{|P|√ n,~n√{|P|}}) sized oracle with O(1) query time, resilient to single node/edge failure. In particular, for |P| bounded by O(√n) this yields an oracle of just O(n) size. We complement the upper bound with a lower bound of Ω(n^{2/3}|P|^{1/2}) (in bits), refuting the possibility of a linear-sized oracle for P of size ω(n^{2/3}).
- We also present a construction of O(n^{4/3} |P|^{1/3}) sized pairwise reachability preservers resilient to dual edge/vertex failures. Previously, such preservers were known to exist only under single failure and had O(n+min{|P|√n,~n√ {|P|}}) size [Chakraborty and Choudhary, ICALP'20]. We also show a lower bound of Ω(n √{|P|}) edges on the size of dual fault-tolerant reachability preservers, thereby providing a sharp gap between single and dual fault-tolerant reachability preservers for |P| = o(n).
- Finally, we provide a generic pairwise reachability preserver construction that provides a o(2^k n |P|) sized subgraph resilient to k failures, for any k ≥ 1. Before this work, we only knew of an O(2^k n |P|) bound implied from the single-source setting [Baswana, Choudhary, and Roditty, STOC'16].
BibTeX - Entry
@InProceedings{chakraborty_et_al:LIPIcs.ICALP.2022.35,
author = {Chakraborty, Diptarka and Chatterjee, Kushagra and Choudhary, Keerti},
title = {{Pairwise Reachability Oracles and Preservers Under Failures}},
booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
pages = {35:1--35:16},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-235-8},
ISSN = {1868-8969},
year = {2022},
volume = {229},
editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2022/16376},
URN = {urn:nbn:de:0030-drops-163768},
doi = {10.4230/LIPIcs.ICALP.2022.35},
annote = {Keywords: Fault-tolerant, Reachability Oracle, Reachability Preservers, Graph sparsification, Lower bounds}
}
Keywords: |
|
Fault-tolerant, Reachability Oracle, Reachability Preservers, Graph sparsification, Lower bounds |
Collection: |
|
49th International Colloquium on Automata, Languages, and Programming (ICALP 2022) |
Issue Date: |
|
2022 |
Date of publication: |
|
28.06.2022 |