License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2022.37
URN: urn:nbn:de:0030-drops-163785
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16378/
Go to the corresponding LIPIcs Volume Portal


Chalermsook, Parinya ; Huang, Chien-Chung ; Nanongkai, Danupon ; Saranurak, Thatchaphol ; Sukprasert, Pattara ; Yingchareonthawornchai, Sorrachai

Approximating k-Edge-Connected Spanning Subgraphs via a Near-Linear Time LP Solver

pdf-format:
LIPIcs-ICALP-2022-37.pdf (0.9 MB)


Abstract

In the k-edge-connected spanning subgraph (kECSS) problem, our goal is to compute a minimum-cost sub-network that is resilient against up to k link failures: Given an n-node m-edge graph with a cost function on the edges, our goal is to compute a minimum-cost k-edge-connected spanning subgraph. This NP-hard problem generalizes the minimum spanning tree problem and is the "uniform case" of a much broader class of survival network design problems (SNDP). A factor of two has remained the best approximation ratio for polynomial-time algorithms for the whole class of SNDP, even for a special case of 2ECSS. The fastest 2-approximation algorithm is however rather slow, taking O(mn k) time [Khuller, Vishkin, STOC'92]. A faster time complexity of O(n²) can be obtained, but with a higher approximation guarantee of (2k-1) [Gabow, Goemans, Williamson, IPCO'93].
Our main contribution is an algorithm that (1+ε)-approximates the optimal fractional solution in Õ(m/ε²) time (independent of k), which can be turned into a (2+ε) approximation algorithm that runs in time Õ(m/(ε²) + {k²n^{1.5}}/ε²) for (integral) kECSS; this improves the running time of the aforementioned results while keeping the approximation ratio arbitrarily close to a factor of two.

BibTeX - Entry

@InProceedings{chalermsook_et_al:LIPIcs.ICALP.2022.37,
  author =	{Chalermsook, Parinya and Huang, Chien-Chung and Nanongkai, Danupon and Saranurak, Thatchaphol and Sukprasert, Pattara and Yingchareonthawornchai, Sorrachai},
  title =	{{Approximating k-Edge-Connected Spanning Subgraphs via a Near-Linear Time LP Solver}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{37:1--37:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16378},
  URN =		{urn:nbn:de:0030-drops-163785},
  doi =		{10.4230/LIPIcs.ICALP.2022.37},
  annote =	{Keywords: Approximation Algorithms, Data Structures}
}

Keywords: Approximation Algorithms, Data Structures
Collection: 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)
Issue Date: 2022
Date of publication: 28.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI