License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2022.86
URN: urn:nbn:de:0030-drops-164277
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16427/
Łącki, Jakub ;
Nazari, Yasamin
Near-Optimal Decremental Hopsets with Applications
Abstract
Given a weighted undirected graph G = (V,E,w), a hopset H of hopbound β and stretch (1+ε) is a set of edges such that for any pair of nodes u, v ∈ V, there is a path in G ∪ H of at most β hops, whose length is within a (1+ε) factor from the distance between u and v in G. We show the first efficient decremental algorithm for maintaining hopsets with a polylogarithmic hopbound. The update time of our algorithm matches the best known static algorithm up to polylogarithmic factors. All the previous decremental hopset constructions had a superpolylogarithmic (but subpolynomial) hopbound of 2^{log^{Ω(1)} n} [Bernstein, FOCS'09; HKN, FOCS'14; Chechik, FOCS'18].
By applying our decremental hopset construction, we get improved or near optimal bounds for several distance problems. Most importantly, we show how to decrementally maintain (2k-1)(1+ε)-approximate all-pairs shortest paths (for any constant k ≥ 2), in Õ(n^{1/k}) amortized update time and O(k) query time. This improves (by a polynomial factor) over the update-time of the best previously known decremental algorithm in the constant query time regime. Moreover, it improves over the result of [Chechik, FOCS'18] that has a query time of O(log log(nW)), where W is the aspect ratio, and the amortized update time is n^{1/k}⋅(1/ε)^{Õ(√{log n})}). For sparse graphs our construction nearly matches the best known static running time / query time tradeoff.
We also obtain near-optimal bounds for maintaining approximate multi-source shortest paths and distance sketches, and get improved bounds for approximate single-source shortest paths. Our algorithms are randomized and our bounds hold with high probability against an oblivious adversary.
BibTeX - Entry
@InProceedings{lacki_et_al:LIPIcs.ICALP.2022.86,
author = {{\L}\k{a}cki, Jakub and Nazari, Yasamin},
title = {{Near-Optimal Decremental Hopsets with Applications}},
booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
pages = {86:1--86:20},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-235-8},
ISSN = {1868-8969},
year = {2022},
volume = {229},
editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2022/16427},
URN = {urn:nbn:de:0030-drops-164277},
doi = {10.4230/LIPIcs.ICALP.2022.86},
annote = {Keywords: Dynamic Algorithms, Data Structures, Shortest Paths, Hopsets}
}
Keywords: |
|
Dynamic Algorithms, Data Structures, Shortest Paths, Hopsets |
Collection: |
|
49th International Colloquium on Automata, Languages, and Programming (ICALP 2022) |
Issue Date: |
|
2022 |
Date of publication: |
|
28.06.2022 |