License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2022.116
URN: urn:nbn:de:0030-drops-164574
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16457/
Brice, Léonard ;
Raskin, Jean-François ;
van den Bogaard, Marie
The Complexity of SPEs in Mean-Payoff Games
Abstract
We establish that the subgame perfect equilibrium (SPE) threshold problem for mean-payoff games is NP-complete. While the SPE threshold problem was recently shown to be decidable (in doubly exponential time) and NP-hard, its exact worst case complexity was left open.
BibTeX - Entry
@InProceedings{brice_et_al:LIPIcs.ICALP.2022.116,
author = {Brice, L\'{e}onard and Raskin, Jean-Fran\c{c}ois and van den Bogaard, Marie},
title = {{The Complexity of SPEs in Mean-Payoff Games}},
booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
pages = {116:1--116:20},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-235-8},
ISSN = {1868-8969},
year = {2022},
volume = {229},
editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2022/16457},
URN = {urn:nbn:de:0030-drops-164574},
doi = {10.4230/LIPIcs.ICALP.2022.116},
annote = {Keywords: Games on graphs, subgame-perfect equilibria, mean-payoff objectives}
}
Keywords: |
|
Games on graphs, subgame-perfect equilibria, mean-payoff objectives |
Collection: |
|
49th International Colloquium on Automata, Languages, and Programming (ICALP 2022) |
Issue Date: |
|
2022 |
Date of publication: |
|
28.06.2022 |