License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2022.117
URN: urn:nbn:de:0030-drops-164580
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16458/
Casares, Antonio ;
Colcombet, Thomas ;
Lehtinen, Karoliina
On the Size of Good-For-Games Rabin Automata and Its Link with the Memory in Muller Games
Abstract
In this paper, we look at good-for-games Rabin automata that recognise a Muller language (a language that is entirely characterised by the set of letters that appear infinitely often in each word). We establish that minimal such automata are exactly of the same size as the minimal memory required for winning Muller games that have this language as their winning condition. We show how to effectively construct such minimal automata. Finally, we establish that these automata can be exponentially more succinct than equivalent deterministic ones, thus proving as a consequence that chromatic memory for winning a Muller game can be exponentially larger than unconstrained memory.
BibTeX - Entry
@InProceedings{casares_et_al:LIPIcs.ICALP.2022.117,
author = {Casares, Antonio and Colcombet, Thomas and Lehtinen, Karoliina},
title = {{On the Size of Good-For-Games Rabin Automata and Its Link with the Memory in Muller Games}},
booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
pages = {117:1--117:20},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-235-8},
ISSN = {1868-8969},
year = {2022},
volume = {229},
editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2022/16458},
URN = {urn:nbn:de:0030-drops-164580},
doi = {10.4230/LIPIcs.ICALP.2022.117},
annote = {Keywords: Infinite duration games, Muller games, Rabin conditions, omega-regular languages, memory in games, good-for-games automata}
}
Keywords: |
|
Infinite duration games, Muller games, Rabin conditions, omega-regular languages, memory in games, good-for-games automata |
Collection: |
|
49th International Colloquium on Automata, Languages, and Programming (ICALP 2022) |
Issue Date: |
|
2022 |
Date of publication: |
|
28.06.2022 |