License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2022.127
URN: urn:nbn:de:0030-drops-164685
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16468/
Go to the corresponding LIPIcs Volume Portal


Idziak, Paweł M. ; Kawałek, Piotr ; Krzaczkowski, Jacek ; Weiß, Armin

Satisfiability Problems for Finite Groups

pdf-format:
LIPIcs-ICALP-2022-127.pdf (0.9 MB)


Abstract

Over twenty years ago, Goldmann and Russell initiated the study of the complexity of the equation satisfiability problem (PolSat and the NUDFA program satisfiability problem (ProgramSat) in finite groups. They showed that these problems are in ? for nilpotent groups while they are NP-complete for non-solvable groups.
In this work we completely characterize finite groups for which the problem ProgramSat can be solved in randomized polynomial time under the assumptions of the Randomized Exponential Time Hypothesis and the Constant Degree Hypothesis. We also determine the complexity of PolSat for a wide class of finite groups. As a by-product, we obtain a classification for ListPolSat, a version of PolSat where each variable can be restricted to an arbitrary subset. Finally, we also prove unconditional algorithms for these problems in certain cases.

BibTeX - Entry

@InProceedings{idziak_et_al:LIPIcs.ICALP.2022.127,
  author =	{Idziak, Pawe{\l} M. and Kawa{\l}ek, Piotr and Krzaczkowski, Jacek and Wei{\ss}, Armin},
  title =	{{Satisfiability Problems for Finite Groups}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{127:1--127:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16468},
  URN =		{urn:nbn:de:0030-drops-164685},
  doi =		{10.4230/LIPIcs.ICALP.2022.127},
  annote =	{Keywords: Satisifiability, Solvable groups, ProgramSat, PolSat, Exponential Time Hypothesis}
}

Keywords: Satisifiability, Solvable groups, ProgramSat, PolSat, Exponential Time Hypothesis
Collection: 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)
Issue Date: 2022
Date of publication: 28.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI