License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CCC.2022.2
URN: urn:nbn:de:0030-drops-165648
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16564/
Go to the corresponding LIPIcs Volume Portal


Tantau, Till

On the Satisfaction Probability of k-CNF Formulas

pdf-format:
LIPIcs-CCC-2022-2.pdf (0.9 MB)


Abstract

The satisfaction probability σ(ϕ) := Pr_{β:vars(ϕ) → {0,1}}[β ⊧ ϕ] of a propositional formula ϕ is the likelihood that a random assignment β makes the formula true. We study the complexity of the problem kSAT-PROB_{> δ} = {ϕ is a kCNF formula ∣ σ(ϕ) > δ} for fixed k and δ. While 3SAT-PROB_{> 0} = 3SAT is NP-complete and SAT-PROB}_{> 1/2} is PP-complete, Akmal and Williams recently showed 3SAT-PROB_{> 1/2} ∈ P and 4SAT-PROB_{> 1/2} ∈ NP-complete; but the methods used to prove these striking results stay silent about, say, 4SAT-PROB_{> 3/4}, leaving the computational complexity of kSAT-PROB_{> δ} open for most k and δ. In the present paper we give a complete characterization in the form of a trichotomy: kSAT-PROB_{> δ} lies in AC⁰, is NL-complete, or is NP-complete; and given k and δ we can decide which of the three applies. The proof of the trichotomy hinges on a new order-theoretic insight: Every set of kCNF formulas contains a formula of maximal satisfaction probability. This deceptively simple result allows us to (1) kernelize kSAT-PROB_{≥ δ}, (2) show that the variables of the kernel form a strong backdoor set when the trichotomy states membership in AC⁰ or NL, and (3) prove a locality property by which for every kCNF formula ϕ we have σ(ϕ) ≥ δ iff σ(ψ) ≥ δ for every fixed-size subset ψ of ϕ’s clauses. The locality property will allow us to prove a conjecture of Akmal and Williams: The majority-of-majority satisfaction problem for kCNFS lies in P for all k.

BibTeX - Entry

@InProceedings{tantau:LIPIcs.CCC.2022.2,
  author =	{Tantau, Till},
  title =	{{On the Satisfaction Probability of k-CNF Formulas}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{2:1--2:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16564},
  URN =		{urn:nbn:de:0030-drops-165648},
  doi =		{10.4230/LIPIcs.CCC.2022.2},
  annote =	{Keywords: Satisfaction probability, majority it\{k\}-sat, kernelization, well orderings, locality}
}

Keywords: Satisfaction probability, majority it{k}-sat, kernelization, well orderings, locality
Collection: 37th Computational Complexity Conference (CCC 2022)
Issue Date: 2022
Date of publication: 11.07.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI