The beta version of DROPS 2 is now publicly available! Check this page out at DROPS 2 now!



License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.DNA.28.1
URN: urn:nbn:de:0030-drops-167869
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16786/
Go to the corresponding LIPIcs Volume Portal


Kennedy, Tiernan ; Pearce, Cadence ; Thachuk, Chris

Fast and Robust Strand Displacement Cascades via Systematic Design Strategies

pdf-format:
LIPIcs-DNA-28-1.pdf (3 MB)


Abstract

A barrier to wider adoption of molecular computation is the difficulty of implementing arbitrary chemical reaction networks (CRNs) that are robust and replicate the kinetics of designed behavior. DNA Strand Displacement (DSD) cascades have been a favored technology for this purpose due to their potential to emulate arbitrary CRNs and known principles to tune their reaction rates. Progress on leakless cascades has demonstrated that DSDs can be arbitrarily robust to spurious "leak" reactions when incorporating systematic domain level redundancy. These improvements in robustness result in slower kinetics of designed reactions. Existing work has demonstrated the kinetic and thermodynamic effects of sequence mismatch introduction and elimination during displacement. We present a systematic, sequence modification strategy for optimizing the kinetics of leakless cascades without practical cost to their robustness. An in-depth case study explores the effects of this optimization when applied to a typical leakless translator cascade. Thermodynamic analysis of energy barriers and kinetic experimental data support that DSD cascades can be fast and robust.

BibTeX - Entry

@InProceedings{kennedy_et_al:LIPIcs.DNA.28.1,
  author =	{Kennedy, Tiernan and Pearce, Cadence and Thachuk, Chris},
  title =	{{Fast and Robust Strand Displacement Cascades via Systematic Design Strategies}},
  booktitle =	{28th International Conference on DNA Computing and Molecular Programming (DNA 28)},
  pages =	{1:1--1:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-253-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{238},
  editor =	{Ouldridge, Thomas E. and Wickham, Shelley F. J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16786},
  URN =		{urn:nbn:de:0030-drops-167869},
  doi =		{10.4230/LIPIcs.DNA.28.1},
  annote =	{Keywords: DNA strand displacement, Energy barriers, Kinetics}
}

Keywords: DNA strand displacement, Energy barriers, Kinetics
Collection: 28th International Conference on DNA Computing and Molecular Programming (DNA 28)
Issue Date: 2022
Date of publication: 04.08.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI