License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.MFCS.2022.69
URN: urn:nbn:de:0030-drops-168671
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16867/
Lima, Paloma T. ;
dos Santos, Vinicius F. ;
Sau, Ignasi ;
Souza, Uéverton S. ;
Tale, Prafullkumar
Reducing the Vertex Cover Number via Edge Contractions
Abstract
The Contraction(vc) problem takes as input a graph G on n vertices and two integers k and d, and asks whether one can contract at most k edges to reduce the size of a minimum vertex cover of G by at least d. Recently, Lima et al. [MFCS 2020, JCSS 2021] proved, among other results, that unlike most of the so-called blocker problems, Contraction(vc) admits an XP algorithm running in time f(d) ⋅ n^O(d). They left open the question of whether this problem is FPT under this parameterization. In this article, we continue this line of research and prove the following results:
- Contraction(vc) is W[1]-hard parameterized by k + d. Moreover, unless the ETH fails, the problem does not admit an algorithm running in time f(k + d) ⋅ n^o(k + d) for any function f. In particular, this answers the open question stated in Lima et al. [MFCS 2020] in the negative.
- It is NP-hard to decide whether an instance (G, k, d) of {Contraction(vc)} is a Yes-instance even when k = d, hence enhancing our understanding of the classical complexity of the problem.
- Contraction(vc) can be solved in time 2^O(d) ⋅ n^{k - d + O(1)}. This XP algorithm improves the one of Lima et al. [MFCS 2020], which uses Courcelle’s theorem as a subroutine and hence, the f(d)-factor in the running time is non-explicit and probably very large. On the other hand, this shows that when k = d, the problem is FPT parameterized by d (or by k).
BibTeX - Entry
@InProceedings{lima_et_al:LIPIcs.MFCS.2022.69,
author = {Lima, Paloma T. and dos Santos, Vinicius F. and Sau, Ignasi and Souza, U\'{e}verton S. and Tale, Prafullkumar},
title = {{Reducing the Vertex Cover Number via Edge Contractions}},
booktitle = {47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
pages = {69:1--69:14},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-256-3},
ISSN = {1868-8969},
year = {2022},
volume = {241},
editor = {Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2022/16867},
URN = {urn:nbn:de:0030-drops-168671},
doi = {10.4230/LIPIcs.MFCS.2022.69},
annote = {Keywords: Blocker problems, edge contraction, vertex cover, parameterized complexity}
}
Keywords: |
|
Blocker problems, edge contraction, vertex cover, parameterized complexity |
Collection: |
|
47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022) |
Issue Date: |
|
2022 |
Date of publication: |
|
22.08.2022 |