License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2022.1
URN: urn:nbn:de:0030-drops-169390
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16939/
Go to the corresponding LIPIcs Volume Portal


Abu-Khzam, Faisal N. ; Fernau, Henning ; Gras, Benjamin ; Liedloff, Mathieu ; Mann, Kevin

Enumerating Minimal Connected Dominating Sets

pdf-format:
LIPIcs-ESA-2022-1.pdf (0.8 MB)


Abstract

The question to enumerate all (inclusion-wise) minimal connected dominating sets in a graph of order n in time significantly less than 2ⁿ is an open question that was asked in many places. We answer this question affirmatively, by providing an enumeration algorithm that runs in time ?(1.9896ⁿ), using polynomial space only. The key to this result is the consideration of this enumeration problem on 2-degenerate graphs, which is proven to be possible in time ?(1.9767ⁿ). Apart from solving this old open question, we also show new lower bound results. More precisely, we construct a family of graphs of order n with Ω(1.4890ⁿ) many minimal connected dominating sets, while previous examples achieved Ω(1.4422ⁿ). Our example happens to yield 4-degenerate graphs. Additionally, we give lower bounds for the previously not considered classes of 2-degenerate and of 3-degenerate graphs, which are Ω(1.3195ⁿ) and Ω(1.4723ⁿ), respectively.
We also address essential questions concerning output-sensitive enumeration. Namely, we give reasons why our algorithm cannot be turned into an enumeration algorithm that guarantees polynomial delay without much efforts. More precisely, we prove that it is NP-complete to decide, given a graph G and a vertex set U, if there exists a minimal connected dominating set D with U ⊆ D, even if G is known to be 2-degenerate. Our reduction also shows that even any subexponential delay is not easy to achieve for enumerating minimal connected dominating sets. Another reduction shows that no FPT-algorithms can be expected for this extension problem concerning minimal connected dominating sets, parameterized by |U|. This also adds one more problem to the still rather few natural parameterized problems that are complete for the class W[3]. We also relate our enumeration problem to the famous open Hitting Set Transversal problem, which can be phrased in our context as the question to enumerate all minimal dominating sets of a graph with polynomial delay by showing that a polynomial-delay enumeration algorithm for minimal connected dominating sets implies an affirmative algorithmic solution to the Hitting Set Transversal problem.

BibTeX - Entry

@InProceedings{abukhzam_et_al:LIPIcs.ESA.2022.1,
  author =	{Abu-Khzam, Faisal N. and Fernau, Henning and Gras, Benjamin and Liedloff, Mathieu and Mann, Kevin},
  title =	{{Enumerating Minimal Connected Dominating Sets}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{1:1--1:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16939},
  URN =		{urn:nbn:de:0030-drops-169390},
  doi =		{10.4230/LIPIcs.ESA.2022.1},
  annote =	{Keywords: enumeration problems, connected domination, degenerate graphs}
}

Keywords: enumeration problems, connected domination, degenerate graphs
Collection: 30th Annual European Symposium on Algorithms (ESA 2022)
Issue Date: 2022
Date of publication: 01.09.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI