License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2022.5
URN: urn:nbn:de:0030-drops-169434
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16943/
Go to the corresponding LIPIcs Volume Portal


Alkema, Henk ; de Berg, Mark ; Monemizadeh, Morteza ; Theocharous, Leonidas

TSP in a Simple Polygon

pdf-format:
LIPIcs-ESA-2022-5.pdf (0.9 MB)


Abstract

We study the Traveling Salesman Problem inside a simple polygon. In this problem, which we call tsp in a simple polygon, we wish to compute a shortest tour that visits a given set S of n sites inside a simple polygon P with m edges while staying inside the polygon. This natural problem has, to the best of our knowledge, not been studied so far from a theoretical perspective. It can be solved exactly in poly(n,m) + 2^O(√nlog n) time, using an algorithm by Marx, Pilipczuk, and Pilipczuk (FOCS 2018) for subset tsp as a subroutine. We present a much simpler algorithm that solves tsp in a simple polygon directly and that has the same running time.

BibTeX - Entry

@InProceedings{alkema_et_al:LIPIcs.ESA.2022.5,
  author =	{Alkema, Henk and de Berg, Mark and Monemizadeh, Morteza and Theocharous, Leonidas},
  title =	{{TSP in a Simple Polygon}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{5:1--5:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16943},
  URN =		{urn:nbn:de:0030-drops-169434},
  doi =		{10.4230/LIPIcs.ESA.2022.5},
  annote =	{Keywords: Traveling Salesman Problem, Subexponential algorithms, TSP with obstacles}
}

Keywords: Traveling Salesman Problem, Subexponential algorithms, TSP with obstacles
Collection: 30th Annual European Symposium on Algorithms (ESA 2022)
Issue Date: 2022
Date of publication: 01.09.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI