License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2022.13
URN: urn:nbn:de:0030-drops-169515
Go to the corresponding LIPIcs Volume Portal

Bansal, Nikhil ; Coester, Christian

Online Metric Allocation and Time-Varying Regularization

LIPIcs-ESA-2022-13.pdf (0.7 MB)


We introduce a general online allocation problem that connects several of the most fundamental problems in online optimization. Let M be an n-point metric space. Consider a resource that can be allocated in arbitrary fractions to the points of M. At each time t, a convex monotone cost function c_t: [0,1] → ℝ_+ appears at some point r_t ∈ M. In response, an algorithm may change the allocation of the resource, paying movement cost as determined by the metric and service cost c_t(x_{r_t}), where x_{r_t} is the fraction of the resource at r_t at the end of time t. For example, when the cost functions are c_t(x) = α x, this is equivalent to randomized MTS, and when the cost functions are c_t(x) = ∞⋅1_{x < 1/k}, this is equivalent to fractional k-server.
Because of an inherent scale-freeness property of the problem, existing techniques for MTS and k-server fail to achieve similar guarantees for metric allocation. To handle this, we consider a generalization of the online multiplicative update method where we decouple the rate at which a variable is updated from its value, resulting in interesting new dynamics. We use this to give an O(log n)-competitive algorithm for weighted star metrics. We then show how this corresponds to an extension of the online mirror descent framework to a setting where the regularizer is time-varying. Using this perspective, we further refine the guarantees of our algorithm.
We also consider the case of non-convex cost functions. Using a simple ?₂²-regularizer, we give tight bounds of Θ(n) on tree metrics, which imply deterministic and randomized competitive ratios of O(n²) and O(nlog n) respectively on arbitrary metrics.

BibTeX - Entry

  author =	{Bansal, Nikhil and Coester, Christian},
  title =	{{Online Metric Allocation and Time-Varying Regularization}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{13:1--13:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-169515},
  doi =		{10.4230/LIPIcs.ESA.2022.13},
  annote =	{Keywords: Online algorithms, competitive analysis, k-server, metrical task systems, mirror descent, regularization}

Keywords: Online algorithms, competitive analysis, k-server, metrical task systems, mirror descent, regularization
Collection: 30th Annual European Symposium on Algorithms (ESA 2022)
Issue Date: 2022
Date of publication: 01.09.2022

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI