License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2022.32
URN: urn:nbn:de:0030-drops-169705
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16970/
Go to the corresponding LIPIcs Volume Portal


Chakrabarti, Amit ; Haris, Themistoklis

Counting Simplices in Hypergraph Streams

pdf-format:
LIPIcs-ESA-2022-32.pdf (0.8 MB)


Abstract

We consider the problem of space-efficiently estimating the number of simplices in a hypergraph stream. This is the most natural hypergraph generalization of the highly-studied problem of estimating the number of triangles in a graph stream. Our input is a k-uniform hypergraph H with n vertices and m hyperedges, each hyperedge being a k-sized subset of vertices. A k-simplex in H is a subhypergraph on k+1 vertices X such that all k+1 possible hyperedges among X exist in H. The goal is to process the hyperedges of H, which arrive in an arbitrary order as a data stream, and compute a good estimate of T_k(H), the number of k-simplices in H.
We design a suite of algorithms for this problem. As with triangle-counting in graphs (which is the special case k = 2), sublinear space is achievable but only under a promise of the form T_k(H) ≥ T. Under such a promise, our algorithms use at most four passes and together imply a space bound of O(ε^{-2} log δ^{-1} polylog n ⋅ min{(m^{1+1/k})/T, m/(T^{2/(k+1)})}) for each fixed k ≥ 3, in order to guarantee an estimate within (1±ε)T_k(H) with probability ≥ 1-δ. We also give a simpler 1-pass algorithm that achieves O(ε^{-2} log δ^{-1} log n⋅ (m/T) (Δ_E + Δ_V^{1-1/k})) space, where Δ_E (respectively, Δ_V) denotes the maximum number of k-simplices that share a hyperedge (respectively, a vertex), which generalizes a previous result for the k = 2 case. We complement these algorithmic results with space lower bounds of the form Ω(ε^{-2}), Ω(m^{1+1/k}/T), Ω(m/T^{1-1/k}) and Ω(mΔ_V^{1/k}/T) for multi-pass algorithms and Ω(mΔ_E/T) for 1-pass algorithms, which show that some of the dependencies on parameters in our upper bounds are nearly tight. Our techniques extend and generalize several different ideas previously developed for triangle counting in graphs, using appropriate innovations to handle the more complicated combinatorics of hypergraphs.

BibTeX - Entry

@InProceedings{chakrabarti_et_al:LIPIcs.ESA.2022.32,
  author =	{Chakrabarti, Amit and Haris, Themistoklis},
  title =	{{Counting Simplices in Hypergraph Streams}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{32:1--32:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16970},
  URN =		{urn:nbn:de:0030-drops-169705},
  doi =		{10.4230/LIPIcs.ESA.2022.32},
  annote =	{Keywords: data streaming, graph algorithms, hypergraphs, sub-linear algorithms, triangle counting}
}

Keywords: data streaming, graph algorithms, hypergraphs, sub-linear algorithms, triangle counting
Collection: 30th Annual European Symposium on Algorithms (ESA 2022)
Issue Date: 2022
Date of publication: 01.09.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI