License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ESA.2022.68
URN: urn:nbn:de:0030-drops-170062
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/17006/
Go to the corresponding LIPIcs Volume Portal


Huang, Chien-Chung ; Sellier, François

Maximum Weight b-Matchings in Random-Order Streams

pdf-format:
LIPIcs-ESA-2022-68.pdf (0.7 MB)


Abstract

We consider the maximum weight b-matching problem in the random-order semi-streaming model. Assuming all weights are small integers drawn from [1,W], we present a 2 - 1/(2W) + ε approximation algorithm, using a memory of O(max(|M_G|, n) ⋅ poly(log(m),W,1/ε)), where |M_G| denotes the cardinality of the optimal matching. Our result generalizes that of Bernstein [Aaron Bernstein, 2020], which achieves a 3/2 + ε approximation for the maximum cardinality simple matching. When W is small, our result also improves upon that of Gamlath et al. [Gamlath et al., 2019], which obtains a 2 - δ approximation (for some small constant δ ∼ 10^{-17}) for the maximum weight simple matching. In particular, for the weighted b-matching problem, ours is the first result beating the approximation ratio of 2. Our technique hinges on a generalized weighted version of edge-degree constrained subgraphs, originally developed by Bernstein and Stein [Aaron Bernstein and Cliff Stein, 2015]. Such a subgraph has bounded vertex degree (hence uses only a small number of edges), and can be easily computed. The fact that it contains a 2 - 1/(2W) + ε approximation of the maximum weight matching is proved using the classical Kőnig-Egerváry’s duality theorem.

BibTeX - Entry

@InProceedings{huang_et_al:LIPIcs.ESA.2022.68,
  author =	{Huang, Chien-Chung and Sellier, Fran\c{c}ois},
  title =	{{Maximum Weight b-Matchings in Random-Order Streams}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{68:1--68:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/17006},
  URN =		{urn:nbn:de:0030-drops-170062},
  doi =		{10.4230/LIPIcs.ESA.2022.68},
  annote =	{Keywords: Maximum weight matching, b-matching, streaming, random order}
}

Keywords: Maximum weight matching, b-matching, streaming, random order
Collection: 30th Annual European Symposium on Algorithms (ESA 2022)
Issue Date: 2022
Date of publication: 01.09.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI