License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX/RANDOM.2022.6
URN: urn:nbn:de:0030-drops-171286
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/17128/
Go to the corresponding LIPIcs Volume Portal


Girish, Uma ; Mittal, Kunal ; Raz, Ran ; Zhan, Wei

Polynomial Bounds on Parallel Repetition for All 3-Player Games with Binary Inputs

pdf-format:
LIPIcs-APPROX6.pdf (0.7 MB)


Abstract

We prove that for every 3-player (3-prover) game G with value less than one, whose query distribution has the support S = {(1,0,0), (0,1,0), (0,0,1)} of Hamming weight one vectors, the value of the n-fold parallel repetition G^{⊗n} decays polynomially fast to zero; that is, there is a constant c = c(G) > 0 such that the value of the game G^{⊗n} is at most n^{-c}.
Following the recent work of Girish, Holmgren, Mittal, Raz and Zhan (STOC 2022), our result is the missing piece that implies a similar bound for a much more general class of multiplayer games: For every 3-player game G over binary questions and arbitrary answer lengths, with value less than 1, there is a constant c = c(G) > 0 such that the value of the game G^{⊗n} is at most n^{-c}.
Our proof technique is new and requires many new ideas. For example, we make use of the Level-k inequalities from Boolean Fourier Analysis, which, to the best of our knowledge, have not been explored in this context prior to our work.

BibTeX - Entry

@InProceedings{girish_et_al:LIPIcs.APPROX/RANDOM.2022.6,
  author =	{Girish, Uma and Mittal, Kunal and Raz, Ran and Zhan, Wei},
  title =	{{Polynomial Bounds on Parallel Repetition for All 3-Player Games with Binary Inputs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{6:1--6:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/17128},
  URN =		{urn:nbn:de:0030-drops-171286},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.6},
  annote =	{Keywords: Parallel repetition, Multi-prover games, Fourier analysis}
}

Keywords: Parallel repetition, Multi-prover games, Fourier analysis
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)
Issue Date: 2022
Date of publication: 15.09.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI