License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX/RANDOM.2022.10
URN: urn:nbn:de:0030-drops-171324
Go to the corresponding LIPIcs Volume Portal

Song, Zhao ; Zhang, Ruizhe

Hyperbolic Concentration, Anti-Concentration, and Discrepancy

LIPIcs-APPROX10.pdf (0.8 MB)


Chernoff bound is a fundamental tool in theoretical computer science. It has been extensively used in randomized algorithm design and stochastic type analysis. Discrepancy theory, which deals with finding a bi-coloring of a set system such that the coloring of each set is balanced, has a huge number of applications in approximation algorithms design. Chernoff bound [Che52] implies that a random bi-coloring of any set system with n sets and n elements will have discrepancy O(√{n log n}) with high probability, while the famous result by Spencer [Spe85] shows that there exists an O(√n) discrepancy solution.
The study of hyperbolic polynomials dates back to the early 20th century when used to solve PDEs by Gårding [Går59]. In recent years, more applications are found in control theory, optimization, real algebraic geometry, and so on. In particular, the breakthrough result by Marcus, Spielman, and Srivastava [MSS15] uses the theory of hyperbolic polynomials to prove the Kadison-Singer conjecture [KS59], which is closely related to discrepancy theory.
In this paper, we present a list of new results for hyperbolic polynomials:
- We show two nearly optimal hyperbolic Chernoff bounds: one for Rademacher sum of arbitrary vectors and another for random vectors in the hyperbolic cone.
- We show a hyperbolic anti-concentration bound.
- We generalize the hyperbolic Kadison-Singer theorem [Brä18] for vectors in sub-isotropic position, and prove a hyperbolic Spencer theorem for any constant hyperbolic rank vectors.
The classical matrix Chernoff and discrepancy results are based on determinant polynomial which is a special case of hyperbolic polynomials. To the best of our knowledge, this paper is the first work that shows either concentration or anti-concentration results for hyperbolic polynomials. We hope our findings provide more insights into hyperbolic and discrepancy theories.

BibTeX - Entry

  author =	{Song, Zhao and Zhang, Ruizhe},
  title =	{{Hyperbolic Concentration, Anti-Concentration, and Discrepancy}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{10:1--10:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-171324},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.10},
  annote =	{Keywords: Hyperbolic polynomial, Chernoff bound, Concentration, Discrepancy theory, Anti-concentration}

Keywords: Hyperbolic polynomial, Chernoff bound, Concentration, Discrepancy theory, Anti-concentration
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)
Issue Date: 2022
Date of publication: 15.09.2022

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI