License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX/RANDOM.2022.13
URN: urn:nbn:de:0030-drops-171354
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/17135/
Go to the corresponding LIPIcs Volume Portal


Li, Yi ; Lin, Honghao ; Woodruff, David P. ; Zhang, Yuheng

Streaming Algorithms with Large Approximation Factors

pdf-format:
LIPIcs-APPROX13.pdf (0.9 MB)


Abstract

We initiate a broad study of classical problems in the streaming model with insertions and deletions in the setting where we allow the approximation factor α to be much larger than 1. Such algorithms can use significantly less memory than the usual setting for which α = 1+ε for an ε ∈ (0,1). We study large approximations for a number of problems in sketching and streaming, assuming that the underlying n-dimensional vector has all coordinates bounded by M throughout the data stream:
1) For the ?_p norm/quasi-norm, 0 < p ≤ 2, we show that obtaining a poly(n)-approximation requires the same amount of memory as obtaining an O(1)-approximation for any M = n^Θ(1), which holds even for randomly ordered streams or for streams in the bounded deletion model.
2) For estimating the ?_p norm, p > 2, we show an upper bound of O(n^{1-2/p} (log n log M)/α²) bits for an α-approximation, and give a matching lower bound for linear sketches.
3) For the ?₂-heavy hitters problem, we show that the known lower bound of Ω(k log nlog M) bits for identifying (1/k)-heavy hitters holds even if we are allowed to output items that are 1/(α k)-heavy, provided the algorithm succeeds with probability 1-O(1/n). We also obtain a lower bound for linear sketches that is tight even for constant failure probability algorithms.
4) For estimating the number ?₀ of distinct elements, we give an n^{1/t}-approximation algorithm using O(tlog log M) bits of space, as well as a lower bound of Ω(t) bits, both excluding the storage of random bits, where n is the dimension of the underlying frequency vector and M is an upper bound on the magnitude of its coordinates.
5) For α-approximation to the Schatten-p norm, we give near-optimal Õ(n^{2-4/p}/α⁴) sketching dimension for every even integer p and every α ≥ 1, while for p not an even integer we obtain near-optimal sketching dimension once α = Ω(n^{1/q-1/p}), where q is the largest even integer less than p. The latter is surprising as it is unknown what the complexity of Schatten-p norm estimation is for constant approximation; we show once the approximation factor is at least n^{1/q-1/p}, we can obtain near-optimal sketching bounds.

BibTeX - Entry

@InProceedings{li_et_al:LIPIcs.APPROX/RANDOM.2022.13,
  author =	{Li, Yi and Lin, Honghao and Woodruff, David P. and Zhang, Yuheng},
  title =	{{Streaming Algorithms with Large Approximation Factors}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{13:1--13:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/17135},
  URN =		{urn:nbn:de:0030-drops-171354},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.13},
  annote =	{Keywords: streaming algorithms, ?\underlinep norm, heavy hitters, distinct elements}
}

Keywords: streaming algorithms, ?_p norm, heavy hitters, distinct elements
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)
Issue Date: 2022
Date of publication: 15.09.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI