License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX/RANDOM.2022.19
URN: urn:nbn:de:0030-drops-171415
Go to the corresponding LIPIcs Volume Portal

Göös, Mika ; Jain, Siddhartha

Communication Complexity of Collision

LIPIcs-APPROX19.pdf (0.7 MB)


The Collision problem is to decide whether a given list of numbers (x_1,…,x_n) ∈ [n]ⁿ is 1-to-1 or 2-to-1 when promised one of them is the case. We show an n^Ω(1) randomised communication lower bound for the natural two-party version of Collision where Alice holds the first half of the bits of each x_i and Bob holds the second half. As an application, we also show a similar lower bound for a weak bit-pigeonhole search problem, which answers a question of Itsykson and Riazanov (CCC 2021).

BibTeX - Entry

  author =	{G\"{o}\"{o}s, Mika and Jain, Siddhartha},
  title =	{{Communication Complexity of Collision}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{19:1--19:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-171415},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.19},
  annote =	{Keywords: Collision, Communication complexity, Lifting}

Keywords: Collision, Communication complexity, Lifting
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)
Issue Date: 2022
Date of publication: 15.09.2022

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI