License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX/RANDOM.2022.25
URN: urn:nbn:de:0030-drops-171477
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/17147/
Go to the corresponding LIPIcs Volume Portal


Feng, Weiming ; Guo, Heng ; Wang, Jiaheng

Improved Bounds for Randomly Colouring Simple Hypergraphs

pdf-format:
LIPIcs-APPROX25.pdf (0.9 MB)


Abstract

We study the problem of sampling almost uniform proper q-colourings in k-uniform simple hypergraphs with maximum degree Δ. For any δ > 0, if k ≥ 20(1+δ)/δ and q ≥ 100Δ^({2+δ}/{k-4/δ-4}), the running time of our algorithm is Õ(poly(Δ k)⋅ n^1.01), where n is the number of vertices. Our result requires fewer colours than previous results for general hypergraphs (Jain, Pham, and Vuong, 2021; He, Sun, and Wu, 2021), and does not require Ω(log n) colours unlike the work of Frieze and Anastos (2017).

BibTeX - Entry

@InProceedings{feng_et_al:LIPIcs.APPROX/RANDOM.2022.25,
  author =	{Feng, Weiming and Guo, Heng and Wang, Jiaheng},
  title =	{{Improved Bounds for Randomly Colouring Simple Hypergraphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/17147},
  URN =		{urn:nbn:de:0030-drops-171477},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.25},
  annote =	{Keywords: Approximate counting, Markov chain, Mixing time, Hypergraph colouring}
}

Keywords: Approximate counting, Markov chain, Mixing time, Hypergraph colouring
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)
Issue Date: 2022
Date of publication: 15.09.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI