License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.DISC.2022.33
URN: urn:nbn:de:0030-drops-172246
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/17224/
Go to the corresponding LIPIcs Volume Portal


Pu, Youer ; Alvisi, Lorenzo ; Eyal, Ittay

Safe Permissionless Consensus

pdf-format:
LIPIcs-DISC-2022-33.pdf (0.6 MB)


Abstract

Nakamoto’s consensus protocol works in a permissionless model, where nodes can join and leave without notice. However, it guarantees agreement only probabilistically. Is this weaker guarantee a necessary concession to the severe demands of supporting a permissionless model? This paper shows that, at least in a benign failure model, it is not. It presents Sandglass, the first permissionless consensus algorithm that guarantees deterministic agreement and termination with probability 1 under general omission failures. Like Nakamoto, Sandglass adopts a hybrid synchronous communication model, where, at all times, a majority of nodes (though their number is unknown) are correct and synchronously connected, and allows nodes to join and leave at any time.

BibTeX - Entry

@InProceedings{pu_et_al:LIPIcs.DISC.2022.33,
  author =	{Pu, Youer and Alvisi, Lorenzo and Eyal, Ittay},
  title =	{{Safe Permissionless Consensus}},
  booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
  pages =	{33:1--33:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-255-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{246},
  editor =	{Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/17224},
  URN =		{urn:nbn:de:0030-drops-172246},
  doi =		{10.4230/LIPIcs.DISC.2022.33},
  annote =	{Keywords: Consensus, Permissionless, Nakamoto, Deterministic Safety}
}

Keywords: Consensus, Permissionless, Nakamoto, Deterministic Safety
Collection: 36th International Symposium on Distributed Computing (DISC 2022)
Issue Date: 2022
Date of publication: 17.10.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI