License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.FSTTCS.2022.9
URN: urn:nbn:de:0030-drops-174012
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/17401/
Go to the corresponding LIPIcs Volume Portal


Bisht, Pranav ; Saxena, Nitin

Derandomization via Symmetric Polytopes: Poly-Time Factorization of Certain Sparse Polynomials

pdf-format:
LIPIcs-FSTTCS-2022-9.pdf (0.8 MB)


Abstract

More than three decades ago, after a series of results, Kaltofen and Trager (J. Symb. Comput. 1990) designed a randomized polynomial time algorithm for factorization of multivariate circuits. Derandomizing this algorithm, even for restricted circuit classes, is an important open problem. In particular, the case of s-sparse polynomials, having individual degree d = O(1), is very well-studied (Shpilka, Volkovich ICALP'10; Volkovich RANDOM'17; Bhargava, Saraf and Volkovich FOCS'18, JACM'20). We give a complete derandomization for this class assuming that the input is a symmetric polynomial over rationals. Generally, we prove an s^poly(d)-sparsity bound for the factors of symmetric polynomials over any field. This characterizes the known worst-case examples of sparsity blow-up for sparse polynomial factoring.
To factor f, we use techniques from convex geometry and exploit symmetry (only) in the Newton polytope of f. We prove a crucial result about convex polytopes, by introducing the concept of "low min-entropy", which might also be of independent interest.

BibTeX - Entry

@InProceedings{bisht_et_al:LIPIcs.FSTTCS.2022.9,
  author =	{Bisht, Pranav and Saxena, Nitin},
  title =	{{Derandomization via Symmetric Polytopes: Poly-Time Factorization of Certain Sparse Polynomials}},
  booktitle =	{42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)},
  pages =	{9:1--9:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-261-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{250},
  editor =	{Dawar, Anuj and Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/17401},
  URN =		{urn:nbn:de:0030-drops-174012},
  doi =		{10.4230/LIPIcs.FSTTCS.2022.9},
  annote =	{Keywords: Multivariate polynomial factorization, derandomization, sparse polynomials, symmetric polynomials, factor-sparsity, convex polytopes}
}

Keywords: Multivariate polynomial factorization, derandomization, sparse polynomials, symmetric polynomials, factor-sparsity, convex polytopes
Collection: 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)
Issue Date: 2022
Date of publication: 14.12.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI